六五文档>基础教育>试卷>四川省成都市石室中学2023-2024学年高三上学期10月月考 理数
四川省成都市石室中学2023-2024学年高三上学期10月月考 理数
格式:docx页数:4页大小:444.6 K上传日期:2023-11-06 17:20浏览次数:254 侵权/举报

成都石室中学2023-2024年度上期高2024届十月月考数学试题(理)(总分:150分,时间:120分钟)第Ⅰ卷(共60分)一、选择题(本题共12道小题,每小题5分,共60分)1.已知集合,,则 A. B. C. D.2.若,则复数在复平面上对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知命题,使,命题关于直线对称,下面结论正确的是 A.命题“”是真命题B.命题“”是假命题 C.命题“”是真命题D.命题“”是假命题4.已知等比数列的前项和为,且数列是等差数列,则A.1或B.2或 C.2或D.或5.某三棱锥的三视图如图所示,则该三棱锥的表面积是 A.B.C. D.6.已知函数,设,则,,的大小关系为 A. B. C. D.7.函数的图象大致为 A.B.C.D.8.已知向量,,则的值是 A. B. C. D.9.2025年四川省新高考将实行模式,即语文数学英语必选,物理历史二选一,政治地理化学生物四选二,共有12种选课模式.假若今年高一的小明与小芳都对所选课程没有偏好,则他们所选六科中恰有四科相同的概率是 A. B. C. D.10.已知动圆M恒过点,且与直线相切,设圆心M的轨迹方程曲线,直线与曲线交于,两点(点在轴上方),与直线交于点,若,则 A. B. C. D.11.在锐角中,角,,的对边分别为,,,为的面积,且,则的取值范围为(    )A. B. C. D.12.已知函数,设方程的3个实根分别为,且,则的值可能为()A. B. C. D.第Ⅱ卷(共90分)填空题(本题共4道小题,每小题5分,共20分)13.若为偶函数,则实数.14.圆与圆的公共弦长为.15.已知三棱锥底面是边长为的等边三角形,平面底面,,则三棱锥的外接球的表面积为.16.已知过坐标原点的直线与双曲线相交于A,B两点,点在第一象限,经过点且与直线垂直的直线与双曲线的另外一个交点为,点在轴上,,点为坐标原点,且,则双曲线的离心率.三、解答题(本题共6道小题,共70分)17.(本小题满分12分)设为数列的前项和,且,.(1)求数列的通项公式;(2)令,,求数列的前项和.18.(本小题满分12分)为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,成都市高三年级开展了一次体质健康模拟测试,并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.(1)估计这200名学生健康指数的平均数和样本方差(同一组数据用该组区间的中点值作代表);(2)由频率分布直方图知,该市学生的健康指数近似服从正态分布,其中近似为样本平均,近似为样本方差.①求;②已知该市高三学生约有10000名,记体质健康指数在区间,的人数为,试求.附:参考数据:,若随机变量服从正态分布,则,,.19.(本小题满分12分)如图,在几何体中,平面四边形是菱形,平面平面,,且,,.证明:(2)若二面角是直二面角,求直线与直线所成角的余弦值.20.(本小题满分12分)动圆C与圆M:外切,与圆N:内切.(1)求动圆C的圆心C的的轨迹方程;(2)直线:与C相交于A,B两点,过C上的点P作x轴的平行线交线段AB于点Q,直线OP的斜率为(O为坐标原点),若,判断是否为定值?并说明理由.21.(本小题满分12分)已知函数和函数.(1)求函数的极值;(2)设集合,(b为常数).①证明:存在实数b,使得集合中有且仅有3个元素;②设,,求证:.选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)22.(本小题满分10分)已知点在曲线上.(1)求动点的轨迹C的直角坐标方程;(2)过原点的直线l与(1)中的曲线C交于A,B两点,且,求直线l的斜率.[选修4-5:不等式选讲](10分)23.(本小题满分10分)已知任意,都有.(1)求实数的取值范围;(2)若(1)问中的最大值为,正数a,b,c满足,求证:.

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服