六五文档>基础教育>试卷>2024届高考数学解析几何专项练【配套新教材】(7)
2024届高考数学解析几何专项练【配套新教材】(7)
格式:docx页数:4页大小:287.5 K上传日期:2023-11-08 18:04浏览次数:211 侵权/举报

2024届高考数学解析几何专项练【配套教材】(7)1.设点,,若直线AB关于对称的直线与圆有公共点,则a的取值范围是___________.2.写出与圆和都相切的一条直线的方程__________.3.已知椭圆的左、右焦点分别为,.若椭圆上存在一点P使,则该椭圆的离心率的取值范围为_____________.4.在平面直角坐标系Oxy中,P是曲线上的一个动点,则点P到直线的距离的最小值是_________.5.已知直线经过点,,直线经过点,.如果,那么___________.6.一动圆过定点,且与定圆相外切,则动圆圆心的轨迹方程为__________.7.在中,a,b,c分别是内角A,B,C的对边,且,,则顶点A运动的轨迹方程是__________.8.已知,是双曲线的两个焦点,P是双曲线上一点,且,则的面积等于__________.9.设AB是椭圆的长轴,点C在椭圆上,且,若,,则椭圆的两个焦点之间的距离为__________.10.已知椭圆的一个顶点为,对于x轴上的点,椭圆E上存在点M,使得,则实数t的取值范围是__________. 答案以及解析1.答案:解析:因为,所以直线AB关于直线对称的直线方程为.由题意可知圆心为,且圆心到对称直线的距离小于或等于1,所以.整理,得,解得.2.答案:或或(答对其中之一即可)解析:由题意知两圆的圆心和半径分别为,,,.因为,所以两圆外切.由两圆外切,画出示意图,如图.设切点为.由,得.因为,所以切线的斜率,所以,即.由图易得两圆均与直线相切.过两圆圆心的直线方程为.联立解得故直线l与的交点为.由切线定理,得两圆的另一公切线过点P.设.由点到直线的距离公式,得,解得,所以,即.3.答案:解析:在中,由正弦定理知.因为,椭圆离心率,所以,即.①又因为点P在椭圆上,所以,将①代入可得.又,所以两边同除以a得.又,所以.4.答案:4解析:由题意设,则点P到直线的距离,当且仅当,即时取等号.故所求最小值是4.5.答案:5或-6解析:因为直线经过点,,所以的斜率存在.而的斜率可能不存在,下面对a进行讨论:当,即时,的斜率不存在,的斜率为0,此时满足.当,即时,直线,的斜率均存在.设直线,的斜率分别为,.由,得,即,解得.综上所述,a的值为5或-6.6.答案:解析:设动圆圆心为点P,则,即,点P的轨迹是以,为焦点,且的双曲线的左支.又,,,动圆圆心的轨迹方程为.7.答案:解析:以BC的中点为原点,BC所在直线为x轴,BC的垂直平分线为y轴,建立平面直角坐标系,图略,则,.因为,所以点A的轨迹是以B,C为焦点,实轴长为6的双曲线的右支且不包括右顶点,其轨迹方程为.8.答案:24解析:双曲线的实轴长为2,焦距.由题意,知,所以,,则,所以,所以.9.答案:解析:不妨设椭圆的标准方程为,由题意知,.,,不妨设点C的坐标为.点C在椭圆上,,,,,则椭圆的两个焦点之间的距离为.10.答案:解析:设,则.①,,由可得,即.②由①②消去,整理得.因为,所以.因为,所以.所以实数t的取值范围为.

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服