六五文档>基础教育>试卷>高三二调数学答案(1)
高三二调数学答案(1)
格式:pdf页数:8页大小:447.2 K上传日期:2023-11-22 10:03浏览次数:460 侵权/举报

吉林市普通中学2022—2023学年度高中毕业年级第二次调研考试对于C选项:令g(x)f(2x)f(2x),x(0,2).数学试题参考答案4x2(x212)一、单项选择题:本大题共小题,每小题分,共分.g(x)f(2x)f(2x)0,8540(4x2)212345678g(x)在(0,2)上递减,即g(x)g(0)0.DCADDDBCx,gxfxfx,fxfx.二、多项选择题:本大题共4小题,共20分.全部选对的得5分,部分选对的得2分,有选错的得0022(22)(42)(2)0(42)(2)分.,f(x2)f(x3)f(4x2)f(x3).9101112又在(,)上单调递增,,即,选项正确;f(x)24x2x3x2x34CADBDACDABCx28x28对于D选项:f(x)f(x),12,122x2x三、填空题:本大题共4个小题,每小题5分,共20分.12xx8即()(12)1x1x20.13.,14.715.2697;a116.[0,2)2xx4121611题解析:,x1x2x1x2.x1x28x38解析:f(x)x22.xx()2()2(16)2()x2x1x1x24x1x24x1x2x1x2令f(x)0,则x2;令f(x)0,则x2且x0;1616令txx,t0,则(xx)2()24t()22t2t332102432,f(x)的增区间为:(2,),减区间为:(,0),(0,2).1221tt故D选项正确.对于A选项:f(2)6且g(x)有三个零点,a6,即A选项正确;1616[另解:由f(x)f(x)f(x),可得xx0,故B错;xx,由基本x28x281612313xx23xx对于B选项:当x0时,f(x)f(x)()()0,13232x2xx不等式可得C对.]f(x)f(x).15题解析:,f(x1)f(x3)f(x1)f(x3)f(x3).(1)由斐波那契数Fn除以4的余数按原顺序构成的数列{an},是以6为最小正周期的数列,fx在(,)上单调递减,xx,即xx,即B选项错误;所以()013130a1a2a3a2023833712697高三数学试题答案第1页(共8页)(2)由斐波那契数F的递推关系可知:n2时FFF,且FF1,Fa6040nn2nn1122024系,可得:13.215.214(cm)100100所以F1F2F2022(F3F2)(F4F3)(F2024F2023)F2024F2a1.所以,抽取的总样本的平均数为14cm.·······································································5分(也可直接由性质aaaaa1得出结论)123nn2(Ⅱ)男生样本的平均数为,样本方差为2;女生样本的平均数为,x13.2s113.36y15.215题说明:样本方差为2;由(Ⅰ)知,总样本的平均数为.s217.5614本题源自人教A版选择性必修第二册P10—P11页阅读与思考部分内容.记总样本的样本方差为2,斐波那契数列满足:,,*,s{an}a11a21anan-1an2(nN,n2)1则s222························9分该数列通项公式为:115n15n(用无理数表示有理数的典型代表){60[13.36(13.214)]40[17.56(15.214)]}16an[()()]100522所以,估计高三年级全体学生的坐位体前屈成绩的方差为16.·········································10分n常考性质:(1)a2a2a2a2aa,即a2aa.123nnn1knn1(注:本次考试给出了分层随机抽样的方差公式,但是此公式需要记忆,请老师在教学中强调并指导k1学生完成公式的推导.)n(2),即.a1a3a5a2n-1a2na2k1a2nk118.【解析】n(Ⅰ)(法一)利用余弦定理(3),即.因为,由余弦定理,得a2a4a6a2na2n11a2ka2n11bcosCccosB6k1a2b2c2a2c2b2nbca6··································································4分(4),即.2ab2aca1a2a3anan21akan21k1(法二)利用正弦定理因为bcosCccosB6,由正弦定理,得(5)a4k为3的倍数.2R(sinBcosCsinCcosB)62Rsin(BC)6四、解答题2RsinA6即a6····························································································4分.【解析】17(Ⅱ)选择①:mn100abc6(Ⅰ)设在男生、女生中分别抽取m名和n名,则,6290015009001500sinAsinBsinCsin4解得:m60,n40.·····························································································2分所以b62sinB,c62sinC.····································································5分记抽取的总样本的平均数为,根据按比例分配分层随机抽样总样本平均数与各层样本平均数的关1所以SbcsinA182sinBsinC182sinBsin(B)ABC24高三数学试题答案第2页(共8页)22a2b2c25b16182sinB(cosBsinB)18sinBcosB18sin2B9sin2B99cos2B因为cosC,222ab3b4(b2)(8b)92sin(2B)9···················································································9分所以sinC1cos2C43b因为ABC是锐角三角形14(b2)(8b)所以SabsinC3bABC0B30B23b所以2又CB,所以2,所以B.···············10分43420C0B16342424b210b16,(b)···················································10分5532所以2B,所以sin(2B)1.········································11分1614444424由二次函数yx210x16的性质可得,当x5时,函数取最大值9;当x时,y.52548所以992sin(2B)92.所以S12····························································································12分45ABC法二:所以分18SABC929··················································································12ABC中,ACAB10BC6,所以点A的轨迹为以B,C为焦点,10为长轴长的椭圆(注:利用余弦定理,解出bc929,仅得出S的最大值,给9分)ABC的一部分.以BC中点为坐标原点,BC所在直线为x轴建立平面直角坐标系.选择②x2y2因为bc10,则c10b可得A点所在的椭圆为:1,如图································································6分2516b2c2a2cosA0不妨设A在x轴上方,坐标为A(x,y)2bc00222因为是锐角三角形,所以acb,ABCcosB0222bca2accosAa2b2c22bccosC02ab(bc)22bc3622222bcab(10b)3602bc即a2c2b236(10b)2b202222()2642bc32abc36b10b012bcbc1634所以b········································································7分5532327110,(bc)225254高三数学试题答案第3页(共8页)当且仅当时,即点在短轴端点时,取得最小值,此时角最大是锐角此时,由(1)可知FOAC,EOACO,所以FO平面AECbcAA2A,y04又EA平面AEC,所以FOEA.1Say12ABC0过作连接,又,所以平面2·····························································································8分OOGAE,GFOGOFOEAOFGGF平面OFG,所以EAGF,当与轴垂直时,即点在图中时,角为直角,此时16,148ABxAA1By0SABCay0525则OGF为二面角FAEC的平面角····································································8分16148当AC与x轴垂直时,即A点在图中A时,角C为直角,此时y,Say305ABC205····························································································································10分综上,A位于除去端点的弧A1A3上时,满足ABC是锐角三角形.116Say,(y4)············································································11分ABC2050OEOA6在RtEOA中,OGEAOEOA,OGEA548所以SABC1252264在RtFOG中,FGOGOF2·················································10分5548同理可得A在x轴下方时,S12,5ABCOG6则cosOGFFG448综上,S12·························································································12分5A

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转WORD
付费下载 VIP免费下载

帮助
中心

联系
客服