六五文档>基础教育>试卷>内蒙古呼和浩特市2023届高三年级第一次质量监测丨理数答案
内蒙古呼和浩特市2023届高三年级第一次质量监测丨理数答案
格式:pdf页数:8页大小:1.2 M上传日期:2023-11-22 14:16浏览次数:345 侵权/举报

理数答案一、选择题题号123456答案ADCCAC题号789101112答案CDBDAA二、填空题题号1314151613532答案e35241三、解答题417.解:(1)男生10500人,女生4500人,3抽取女生占总人数的比例为∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)10又分层抽样收集300位学生3女生样本数据应收集为30090∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)10(2)由频率分布直方图可知,学生每周平均体育运动时间超过4个小时的概率为(0.150.1250.0750.025)20.75∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)33(3)由(2)可知运动时间超过4小时的概率p,则X~B(4,)∙∙∙∙∙∙∙∙∙∙(5分)44131P(x0)C0()4()0,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)444256133P(x1)C1()3()1,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)444641327P(x2)C2()2()2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(8分)4441281327P(x3)C3()1()3,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)444641381P(x4)C4()0()4,则X的分布列为:∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)444256X0123413272781P25664128642563且E(X)43.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(12分)418.解:(1)证明:方法一:因为E、F、G分别是棱AB、AP、PD的中点,所以EF//BP,GF//AD,又EF平面PBC,BP平面PBC,所以EF//平面PBC,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)又因为底面ABCD为平行四边形,所以AD//BC,则GF//BC,又GF平面PBC,BC平面PBC,所以GF//平面PBC,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)因为GFEFF,GF,EF平面EFG,所以平面EFG//平面PBC,∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)又PC平面PBC,所以PC//平面EFG,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)方法二:取AC的中点H,连接FH,HE,取AC的中点H,连接FH,HE,GH∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)因为E、H分别是棱AB、AC的中点,所以EH//BP分=∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2)同理可知FG//AD=所以EH//FG=所以E、H、G、F四点共面∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)同理可知FH//PC又PC平面EFG,FH平面EFG,所以PC//平面EFG∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)(2)因为PCPDCD22,ACADAP2,所以APAD,APAC又,平面,平面,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)所�以�∩????平=面�????⊂.以�为�原��点,��⊂,�,���所在直线分别为轴、轴、轴建立��空⊥间直角????坐�标�系,∙�∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙�∙∙∙�∙∙∙∙∙∙�∙∙�∙∙∙∙∙∙�∙∙∙�∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙�∙∙∙∙∙∙∙∙∙�∙∙(7分�)则,,,,,所�以(0,0,0)�(1,−1,,0)�(0,0,1),∙�∙∙∙(∙0∙∙,∙1∙∙,∙1∙∙)∙∙∙∙∙�∙∙(∙0∙∙,∙0∙∙,∙2∙∙)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)��=(−1,1,1)��=(0,1,0),设平面的一个法向量为,��=(0,2,−2)����=(�0,�0,�0)所以,即取,则,∙∙∙∙∙∙(10分)000�⋅��=0,−�+�+�=0,00�=1�=(−1,0,1)设与�⋅平F面G=0,所成的�角=为0,,则,−21�>|=|8⋅2|=2则直��线与平��面�的夹角为�.∙∙∙s∙i∙n∙∙�∙∙∙=∙∙∙∙|∙c∙∙o∙∙s∙∙<∙∙∙∙�∙∙�∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(12分)π19.解�:����6(1)选①,设递增等差数列an的公差为dd0,由a22d,a322d,2a625d,有22d22d25d4,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)化简得d24.则d2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)ana1(n1)d2n,所以an的通项公式为an2n.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)选②,设递增等差数列an的公差为dd0,由S24d,a625d,S486d,2有25d4d86d4,化简得19d216d440,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)即19d22d20,解得d2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)则ana1(n1)d2n,所以an的通项公式为an2n.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)111选③,设递增等差数列an的公差为dd0,由是与的等差中项,得a5S2S5112,S2S5a5即S2S5a52S2S5,则有4d1010d24d24d1010d,化简得12d211d260,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)即d212d130,解得d2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)则ana1(n1)d2n,所以an的通项公式为an2n.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)bnbnn1(2)由是以1为首项,2为公比的等比数列,得2,由(1)知an2n,anann1n即有bn22nn2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(8分)123n则Tn122232n2,234n1于是2Tn122232n2,两式相减得:2(12n)T2122232nn2n1n2n1(1n)2n12,∙∙∙∙∙∙∙(11分)n12因此n1Tn(n1)22∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(12分)20.解:(1)由已知c2,得a2b24①,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)x2y231设椭圆方程1,代入点M(3,1)得1②,联立①②解得a2b2a2b2a26,b22,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)x2y2所以椭圆方程为1∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)62(2)方法一:由题可知直线PQ斜率存在,设直线PQ的方程为ykxm.设点P(x1,y1),Q(x2,y2)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(5分)x2y21联立62得,(3k21)x26kmx3m260,满足Δ0时,∙∙∙∙∙∙∙∙∙∙(7分)ykxm6km3m26有xx,xx,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(8分)123k21123k21由AMBM可得kMPkMQ0,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)y1y1kxm1kxm1120,120,即x13x23即x13x23,化简得2kx1x2(m13k)(x1x2)23(m1)02代入韦达定理,可得33k3k(m2)3(m1)0,又点M(3,1)不在直线PQ上,因此3km10,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)33所以3k30,即k,故直线PQ的斜率为定值.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(12分)33xx'3(x'3)2(y'1)2方法二:令,则M'(0,0),则椭圆C'方程1∙∙∙∙∙∙∙∙∙∙(5分)yy'162即椭圆C':x23y223x6y0,设直线PQ的方程为mxny1,∙∙∙∙∙∙∙∙∙∙(6分)y1y2m则kPM,kQM,kPQ,联立可得x1x2nx23y223x(mxny

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转WORD
付费下载 VIP免费下载

帮助
中心

联系
客服