六五文档>基础教育>试卷>安徽省安庆、池州、铜陵三市联考2023-2024学年高三上学期开学联考数学答案·2024届高三开学考
安徽省安庆、池州、铜陵三市联考2023-2024学年高三上学期开学联考数学答案·2024届高三开学考
格式:pdf页数:6页大小:431.5 K上传日期:2023-11-28 17:25浏览次数:56 侵权/举报

数学参考答案题号123456789101112答案CDBADCDAABCADBCDBD1.【解析】Bxx2或x4,所以AB1,5,6,故选C.222.【解析】z1i,故选D.1i2cos223.【解析】因为2,所以cos2sin2,cos4sincos4sin4,1sin34sincos3cos2,tan或tan0(舍去),故选B.41l4.【解析】设底面半径为r,由已知得r3,高为h3.故体积为Vr2h3.3R=1225.【解析】由已知fxln2x4xaln2x4xalna,因为rfxfx,故lna0,所以a1,故fxln2x4x21.f2ln2232ln12.25【解析】一次分形长度为4,二次分形长度为4,次分形长度为452故选6.a1a25a54,C.333243【解析】设,则,,7.PF23mQF22mPF12a3mQF12a2m.22264417在PQF中得:2a3m25m22a2m,即ma.在PFF中得:a2a24c2,故e.1151225255D1PC18.【解析】过点Q作GH//BC,PMDG,PNCD,设CGt,PD1s,A1B11122则,,Gt,s0,1SADQADDG1tPMDG1t,O22QDHtt1stMCOMDMsinCDGts,OP1t2st,N1t21t21t2AB111st11故四面体PQAD的体积为V1t21st,当st0时,其最大值为,故A正确.321t2669.【解析】可求甲乙平均数为x1x27,中位数均为7,故A,B正确;甲的极差为6,乙的极差为4,故140112C正确;甲的标准差为:1449499,乙的标准差为:441111,故D7777错误.10.【解析】由已知A,B为单位圆上任意两点,OAOB1,PAPBAB2,A正确;设D为AB的第1页共6页{#{QQABLYCEggCIAAJAABhCQQ0QCEKQkAECCIgOQEAIMAIBCQNABAA=}#}中点,则PA+PB=2PD6,故B错误;当P,A,B共线时,PAPBAB2,故C错误;当P,A,B共线时,PA+PB2PD4,故D正确.1111.【解析】fx2x3,由f10,故lna1,所以a,fxx23xlnx此时xlnae,2x23x12x1x111fx,fx在0,,1,上单调递增,在,1单调递减.fx极小值xx223111为f12,故ff1.又fln42f1,故BCD正确.5416212.【解析】可求D5,2,由ABBC,BCCD,M的方程为:x1y24,22N的方程为:x3y24,MN22,P,Q两点之间的距离的最大值y为,故错误由已知PQ//MN,故直线PQ的斜率为,所以正确AD224A.1B.N当PQ斜率为0时,直线PQ被M截得的弦长为4,当PQ斜率不为0时,直线PQBOMCx被M截得的弦长不为4,故C错误.当DP与M相切时,tanADP最大,此时14tanADM,故tanADP,所以D正确.23【答案】【解析】展开式第项为:r3r6,由,得,故常数项为413.15r1Tr1C6x3r120r4C615.333314.【答案】,,,或0,,0,等【解析】因为fxfx,所以fx为偶函444433数,由x0,,fx2sinx,故fx在0,上单调递增,在,上单调递减,由4443对称性可知在,上单调递增.4515【.答案】【解析】由已知得F0,1,设直线l的方程为ykx1代入x24y整理得x24kx40,2设,故,①②,又,故③。由①Ax1,y1,Bx2,y2x1x24kx1x24AF4FBx14x21②③解得29此时,2,到距离为:k.ABy1y22kx1x244k1OABd.161k215故OAB的面积为SABd2k21.22lnx1216.【答案】【解析】fx2x2xlna1lnx在0,上有两个不等的1,elnalnalna实数根,故0lna1,解得a1,e.第2页共6页{#{QQABLYCEggCIAAJAABhCQQ0QCEKQkAECCIgOQEAIMAIBCQNABAA=}#}17.【解析】(1)由已知及正弦定理得:ababcbc,即b2c2a2bc.·······2分b2c2a212由余弦定理得:cosA,又A0,,所以A.···················3分2bc232故C,341262所以sinCsinsincoscossin····················································5分343434427(2)由(1)知A,又ADAC,所以BAD,ADB3612762sinADBsinsin·······································································7分12344在ABD中,由正弦定理得:7ADsinABAD326,所以AB12···············································10分sinADBsinBsin24【解析】()由已知,由已知,又18.1b1a23b12a225当时,分n2bna2na2n122a2n222bn12··························································2故,bn22bn12所以数列是首项为,公比为的等比数列分bn252···························································4()由()知:n1分21bn522···········································································6分T2na1a2a2na1a3a2n1a2a4a2n2b1b2bn2n·······8设Sbbb5122n12n52n2n5············································10分n12n故n1分T2n2Sn2n526n10··············································································1219.【解析】(1)记A,B,C,D,E参赛获胜事件分别用A,B,C,D,E表示,5场全胜的概率为:PABCDE0.40.50.60.70.80.0672·······································2分甲班至多获胜4场与5场全胜为对立事件,故甲班至多获胜4场的概率为P1PABCDE10.06720.9328甲班至多获胜4场的概率为0.9328·················································································4分(2)记BCD三人组合班级得分为Y,Y的取值分别为0,7,6,5,11,12,13,18,由已知得PY00.50.40.30.06,PY70.50.40.30.06第3页共6页{#{QQABLYCEggCIAAJAABhCQQ0QCEKQkAECCIgOQEAIMAIBCQNABAA=}#}PY60.50.60.30.09,PY50.50.40.70.14PY110.50.60.70.21,PY120.50.40.70.14PY130.50.60.30.09,PY180.50.60.70.21·········································10分EY70.0660.0950.14110.21120.14130.09180.2110.6因为EY10.610,所以BCD三人组合具有参赛资格····················································12分20.【解析】(1)由已知可得:BC2,PB2,PCCDAB22在PBC中,PB2BC2PC2,故PBBC······························································2分又ABBC,且PBABB,BC平面PAB因为BCABC,所以平面PAB平面PBC····························································4分(2)取AB、CD的中点O、E,连接OP,OE.z因为PAPB,所以POAB,P由()知:平面平面,………………分y1PABABC6DC所以PO平面ABC.AOBx以OB,OE,OP所在直线分别为x,y,z轴,建立空间直角坐标系。则A2,0,0,B2,0,0,C2,2,0,P0,0,2···················································8分设平面的法向量为,APCmx1,y1,z1AC22,2,0,AP2,0,222x12y10mAC0,mAP0,故,2x12z10取,则分x11,y12,z11m1,2,1······················································10mn1又平面APC的法向量为n0,0,1,cosm,n。mn23所以二面角PACB的正弦值为··········································································12分2c163621.【解析】(1)由已知得:e2,c2a,所以b23a2,又1,················2分aa2b2x2y2解得a24,b212,故双曲线C的方程为1····························

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转WORD
付费下载 VIP免费下载

帮助
中心

联系
客服