六五文档>基础教育>试卷>2023年山东省威海市中考数学真题(解析版)
2023年山东省威海市中考数学真题(解析版)
格式:docx页数:24页大小:1.5 M上传日期:2023-12-06 10:18浏览次数:95 侵权/举报

威海市2023年初中学业考试一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.面积为9的正方形,其边长等于( )A.9的平方根 B.9的算术平方根 C.9的立方根 D.5的算术平方根【答案】B【解析】【分析】根据算术平方根的定义解答即可.【详解】解:∵面积等于边长的平方,∴面积为9的正方形,其边长等于9的算术平方根.故选B.【点睛】本题考查了算术平方根意义,一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根.2.我国民间建筑装饰图案中,蕴含着丰富的数学之美.下列图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】直接根据轴对称图形的定义和中心对称图形的定义逐项判断即可.【详解】解:A.该图形是轴对称图形,也是中心对称图形,故此选项正确;B.该图形不是轴对称图形,但是中心对称图形,故此选项错误;C.该图形不是轴对称图形,也不是中心对称图形,故此选项错误;D.该图形是轴对称图形,但不是中心对称图形,故此选项错误.故选:A.【点睛】本题考查了对称图形的定义和中心对称图形的定义,在平面内,一个图形绕某点旋转180°后能与原来的图形重合,这个图形叫做中心对称图形;一个图形沿某条直线对折后,直线两旁的部分能重合,这样的图形叫做轴对称图形.理解这两个概念是关键.3.下列运算正确的是( )A. B. C. D.【答案】C【解析】【分析】根据合并同类项、积的乘方、单项式乘以单项式和同底数幂除法法则进行判断即可.【详解】A、,不符合题意;B、,不符合题意;C、,符合题意;D、,不符合题意,故选:C.【点睛】此题考查了合并同类项、积的乘方、单项式乘以单项式和同底数幂除法,熟练掌握运算法则是解本题的关键.4.如图,某商场有一自动扶梯,其倾斜角为,高为7米.用计算器求的长,下列按键顺序正确的是( )A. B. C. D.【答案】B【解析】【分析】根据正弦的定义得出,进而可得答案.【详解】解:由题意得,∴,∴按键顺序为,故选:B.【点睛】本题考查了正弦的定义,计算器的使用,正确理解三角函数的定义是解题的关键.5.解不等式组时,不等式①②的解集在同一条数轴上表示正确是( )A. B. C. D.【答案】B【解析】【分析】分别求出两个不等式的解集,然后根据在数轴上表示解集的方法判断即可.【详解】解:解不等式①得:,解不等式②得:,不等式①②的解集在同一条数轴上表示为:故选:B.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.一个不透明的袋子中装有2个红球、3个黄球,每个球除颜色外都相同.晓君同学从袋中任意摸出1个球(不放回)后,晓静同学再从袋中任意摸出1个球.两人都摸到红球的概率是( )A. B. C. D.【答案】A【解析】【分析】根据题意画出树状图得出所有等可能的情况数,找出两人都摸到红球的情况数,然后根据概率公式即可得出答案.【详解】解:根据题意画树状图如下:由树状图知,共有20种等可能的情况数,其中两人都摸到红球的有2种,则两人都摸到红球的概率是.故选:A.【点睛】此题考查了列表法或树状图法求概率.树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.7.如图是一正方体的表面展开图.将其折叠成正方体后,与顶点K距离最远的顶点是( )A.A点 B.B点 C.C点 D.D点【答案】D【解析】【分析】根据题意画出立体图形,即可求解.【详解】解:折叠之后如图所示,则K与点D的距离最远,故选D.【点睛】本题考查了正方体的展开与折叠,学生需要有一定的空间想象能力.8.常言道:失之毫厘,谬以千里.当人们向太空发射火箭或者描述星际位置时,需要非常准确的数据.的角真的很小.把整个圆等分成360份,每份这样的弧所对的圆心角的度数是..若一个等腰三角形的腰长为1千米,底边长为4.848毫米,则其顶角的度数就是.太阳到地球的平均距离大约为千米.若以太阳到地球的平均距离为腰长,则顶角为的等腰三角形底边长为( )A.24.24千米 B.72.72千米 C.242.4千米 D.727.2千米【答案】D【解析】【分析】设以太阳到地球的平均距离为腰长,则顶角为的等腰三角形底边长为x毫米,根据顶角相等的两等腰三角形相似,相似三角形的对应边成比例,可列出方程,求解即可.【详解】解:设以太阳到地球的平均距离为腰长,则顶角为的等腰三角形底边长为x毫米,根据题意,得解得:∴等腰三角形底边长为毫米千米.故选:D.【点睛】本题考查一元一次方程的应用.根据相似三角形判定与性质列出方程是解题的关键,注意单位换算.9.如图,四边形是一张矩形纸片.将其按如图所示的方式折叠:使边落在边上,点落在点处,折痕为;使边落在边上,点落在点处,折痕为.若矩形与原矩形相似,,则的长为( )A. B. C. D.【答案】C【解析】【分析】先根据折叠的性质与矩形性质,求得,设的长为x,则,再根据相似多边形性质得出,即,求解即可.【详解】解:,由折叠可得:,,∵矩形,∴,∴,设的长为x,则,∵矩形,∴,∵矩形与原矩形相似,∴,即,解得:(负值不符合题意,舍去)∴,故选:C.【点睛】本题考查矩形的折叠问题,相似多边形的性质,熟练掌握矩形的性质和相似多边形的性质是解题的关键.10.在中,,下列说法错误的是( )A. B.C.内切圆的半径 D.当时,是直角三角形【答案】C【解析】【分析】根据三角形三边关系、三角形面积、内切圆半径的计算以及勾股定理逆定理逐一求解即可.【详解】解:∵,∴即,故A说法正确;当时,,若以底,高,∴,故B说法正确;设内切圆的半径为r,则,∵,∴,,∵,∴,∴,故C说法错误;当时,,∴是直角三角形,故D说法正确;故选:C.【点睛】本题考查了三角形三边关系,三角形面积,三角形内切圆半径以及勾股定理的逆定理,掌握内切圆半径与圆的面积周长之间的关系是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.计算:___________.【答案】【解析】【分析】根据零次幂、负整数指数幂和立方根的性质化简,然后计算即可.【详解】解:原式,故答案为:.【点睛】本题考查了实数混合运算,熟练掌握零次幂、负整数指数幂和立方根的性质是解题的关键.12.某些灯具的设计原理与抛物线有关.如图,从点照射到抛物线上的光线,等反射后都沿着与平行的方向射出.若,,则___________.【答案】【解析】【分析】可求,由,即可求解.【详解】解:,,,,,,故答案:.【点睛】本题考查了平行线性质,掌握性质是解题的关键.13.《九章算术》中有一个问题:“今有共买物,人出八,盈三;人出七,不足四、问人数、物价各几何?”题目大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?该物品价值多少元?设有x人,该物品价值y元,根据题意列方程组:___________.【答案】【解析】【分析】设有人,物品价值为元,根据等量关系“每人出8元,多3元”和“每人出7元,少4元”列出二元一次方程组即可解答.【详解】解:设有人,物品价值为元,由题意得:.故答案为:.【点睛】本题主要考查列二元一次方程组.根据题意、正确找到等量关系是解题的关键.14.如图,在正方形中,分别以点为圆心,以的长为半径画弧,两弧交于点,连接,则___________.【答案】15【解析】【分析】证明是等边三角形可得,再求出,利用等腰三角形的性质可求出,进而可求出.【详解】解:连接,由作图方法可知,,∴是等边三角形,∴,∵四边形是正方形,∴,,∴,∴,∴.故答案为:15.【点睛】本题考查了正方形的性质,等边三角形的判定与性质,等腰三角形的性质,正确作出辅助线是解答本题的关键.15.一辆汽车在行驶过程中,其行驶路程(千米)与行驶时间(小时)之间的函数关系如图所示.当时,与之间的函数表达式为;当时,与之间的函数表达式为___________.【答案】【解析】【分析】先把代入,求得,再设当时,与之间的函数表达式为,然后把,分别代入,得,求解得,即可求解.【详解】解:把代入,得,设当时,与之间的函数表达式为,把,分别代入,得,解得:,∴与之间的函数表达式为故答案为:.【点睛】本题考查函数的图象,待定系数法求一次函数解析式,熟练掌握用待定系数法求一次函数解析式是解题的关键.16.如图,在平面直角坐标系中,点在反比例函数的图象上.点的坐标为.连接.若,则的值为___________.【答案】##【解析】【分析】过点作轴于点,过点作于点,证明,进而根据全等三角形的性质得出,根据点,进而得出,根据点在反比例函数的图象上.列出方程,求得的值,进而即可求解.【详解】解:如图所示,过点作轴于点,过点作于点,∴,∵,∴∴∴∵点的坐标为.∴,∴∵在反比例函数的图象上,∴解得:或(舍去)∴故答案为:.【点睛】本题考查了反比例函数的图象和性质,全等三角形的判定和性质,求得点的坐标是解题的关键.三、解答题(本大题共8小题,共72分)17.先化简,再从的范围内选择一个合适的数代入求值.【答案】,当时,原式=(答案不唯一)【解析】【分析】先根据分式混合运算法则计算即可化简,再根据分式有意义条件把合适的数代入化简式计算即可.【详解】解:,∵且,∴当时,原式.【点睛】本题考查分式化简求值,熟练掌握分式运算法则和分式有意义的条件是解题的关键.18.某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校72千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的倍,求大型客车的速度.【答案】大型客车的速度为【解析】【分析】设出慢车的速度,再利用慢车的速度表示出快车的速度,根据所用时间差为12分钟列方程解答.【详解】解:设慢车的速度为,则快车的速度为,根据题意得,解得:,经检验,是原方程的根. 故大型客车的速度为.【点睛】此题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键,此题的等量关系是快车与慢车所用时间差为12分钟.19.如图,某育苗基地为了能够最大限度地遮挡夏季炎热的阳光和充分利用冬天的光照,计划在苗圃正上方搭建一个平行于地面的遮阳蓬.已知苗圃的(南北)宽米,该地区一年中正午时刻太阳光与地平面的最大夹角是,最小夹角是.求遮阳蓬的宽和到地面的距离.参考数据:,,,,,.【答案】米,米.【解析】【分析】过点D作于F,解,得,解,得,所以,解得米,从而得米,再由矩形的性质求解即可.【详解】解:如图,过点D作于F,在中,,∴,在中,,∴,∴,解得:(米),∴(米),∴(米),∵∴矩形,∴米,米.答:遮阳蓬的宽为7.5米,到地面的距离为4.2米.【点睛】本题考查解直角三角形的应用,通过作辅助线构造直角三角形是解题的关键.20.某校德育处开展专项安全教育活动前,在全校范围内随机抽取了40名学生进行安全知识测试,测试结果如表1所示(每题1分,共10道题),专项安全教育活动后,再次在全校范围内随机抽取40名学生进行测试,根据测试数据制作了如图1、图2所示的统计图(尚不完整).表1分数/分人数/人2456687881292设定8分及以上为合格,分析两次测试结果得到表2.表2平均数/分众数/分中位数/分合格率第一次6.4a735%第二次b89c请根据图表中的信息,解答下列问题:(1)将图2中的统计图补充完整,并直接写出a,b,c的值;(2)若全校学生以1200人计算,估计专项安全教育活动后达到合格水平的学生人数;(3)从多角度分析本次专项安全教育活动的效果.【答案】(1)见解析,,,;(2

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服