六五文档>基础教育>试卷>高考物理计算题专题08 动量定理和动量守恒定律(原卷版)-高考物理计算题专项突破
高考物理计算题专题08 动量定理和动量守恒定律(原卷版)-高考物理计算题专项突破
格式:docx页数:10页大小:1.8 M上传日期:2023-11-18 09:34浏览次数:405 侵权/举报

专题08动量定理和动量守恒定律1.动量:;(动量是矢量,它的方向与速度方向相同)2.动量与动能关系式:或;3.冲量:;4.动量定理:;5.动量守恒定律:,,;在解有关动量定理和动量守恒定律的计算题时:首先选取研究对象,一般情况下可选取单个物体,也可以选取两个或多个物体组成的系统为研究对象;其次,在研究过程中,要选定正方向,进而分析运动的初、末状态;再次,分段或全程对研究对象进行受力分析,针对系统的受力分析,要弄清系统的内力和外力,判断其是否满足动量守恒条件。最后,根据动量定理或动量守恒定律,列出方程求解。一、动量定理1.动量定理的研究对象可以是单个物体,也可以是物体系统。对物体系统,只需分析系统受的外力,不必考虑系统内力。系统内力的作用不改变整个系统的总动量。 2.用牛顿第二定律和运动学公式能求解恒力作用下的匀变速直线运动的间题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。 但是,动量定理不仅适用于恒定的力,也适用于随时间变化的力。对于变力,动量定理中的F应当理解为变力在作用时间内的平均值。 3.用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小。另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小。分析问题时,要把哪个量一定哪个量变化搞清楚。4.应用求变力的冲量:如果物体受到变力作用,则不直接用求变力的冲量,这时可以求出该力作用下的物体动量的变化,等效代换变力的冲量I。 5.应用求恒力作用下的曲线运动中物体动量的变化:曲线运动中物体速度方向时刻在改变,求动量变化需要应用矢量运算方法,比较复杂,如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。二、应用动量守恒定律列方程时应注意以下四点 1.矢量性:动量守恒方程是一个矢量方程。对于作用前后物体的运动方向都在同一直线上的问题,应选取统一的正方向,凡是与选取正方向相同的动量为正,相反为负。若方向未知,可设正方向列动量守恒方程,通过解得结果的正负,判定未知量的方向。 2.瞬时性:动量是一个瞬时量,动量守恒指的是系统任一瞬时的动量恒定。列方程时,等号左侧是作用前(或某一时刻)各物体的动量和,等号右侧是作用后(或另一时刻)各物体的动量和。不同时刻的动量不能相加。 3.相对性:由于动量大小与参考系的选取有关,因此应用动量守恒定律时,应注意各物体的速度必须是相对同一惯性系的速度,一般以地面为参考系。 4.普适性:它不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,对微观粒子组成的系统也适用。 如果相互作用的物体所受外力之和不为零,外力也不远小于内力,系统总动量就不守恒,也不能近似认为守恒,但是,只要在某一方向上合外力的分量为零,或者某一方向上的外力远小于内力,那么在这一方向上系统的动量守恒或近似守恒。三、平均动量守恒 若系统在全过程中的动量守恒(包括单方向动量守恒),则这一系统在全过程中的平均动量也必守恒,如果系统是由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由动量守恒定律,,得推论:。使用时应明确必须是相对同一参照物位移的大小。常见的“人船模型”或叫“人车模型”符合此特点。四、运用各种力学规律解题的注意事项: 1.使用牛顿运动定律的关键是:确定研究对象,做好受力分析和过程分析,明确并建立力和加速度及运动与加速度的关系。2.使用动量定理的关键是:确定研究对象,做好受力分析和过程分析,选取正方向,明确合外力的冲量及初、末动量的正负。3.使用动能定理的关键是:确定研究对象,做好受力分析和过程分析,明确哪些力做功,哪些力不做功,哪些力做正功,哪些力做负功及动能的变化。4.使用动量守恒定律的关键是:确定研究对象,做好受力分析和过程分析,判断是否符合动量守恒的适用情况和适用条件。5.使用机械能守恒定律的关键是:确定研究对象,做好受力分析和过程分析,判断是否符合机械能守恒的适用情况和适用条件。6.使用能量守恒定律的关键是:确定研究对象,做好受力分析和过程分析,明确有哪些力做功,做功的结果是导致什么能向什么能转化,然后建立的关系。典例1:(2022·北京·高考真题)体育课上,甲同学在距离地面高处将排球击出,球的初速度沿水平方向,大小为;乙同学在离地处将排球垫起,垫起前后球的速度大小相等,方向相反。已知排球质量,取重力加速度。不计空气阻力。求:(1)排球被垫起前在水平方向飞行的距离x;(2)排球被垫起前瞬间的速度大小v及方向;(3)排球与乙同学作用过程中所受冲量的大小I。典例2:(2022·湖南·高考真题)如图(a),质量为m的篮球从离地H高度处由静止下落,与地面发生一次非弹性碰撞后反弹至离地h的最高处。设篮球在运动过程中所受空气阻力的大小是篮球所受重力的倍(为常数且),且篮球每次与地面碰撞的碰后速率与碰前速率之比相同,重力加速度大小为g。(1)求篮球与地面碰撞的碰后速率与碰前速率之比;(2)若篮球反弹至最高处h时,运动员对篮球施加一个向下的压力F,使得篮球与地面碰撞一次后恰好反弹至h的高度处,力F随高度y的变化如图(b)所示,其中已知,求的大小;(3)篮球从H高度处由静止下落后,每次反弹至最高点时,运动员拍击一次篮球(拍击时间极短),瞬间给其一个竖直向下、大小相等的冲量I,经过N次拍击后篮球恰好反弹至H高度处,求冲量I的大小。典例3:(2022·安徽淮北·二模)我国自主研制的“奋斗者”号潜水器成功下潜突破万米,给世界带来巨大的震撼。某次潜水器完成作业后,以的速度匀速上浮到达离海面处时,在极短的时间内以的速度竖直向下抛出一质量为的载重,然后加速至最大速度后匀速运行,距水面距离较近时关闭发动机,减速至水面时速度恰好为零。设潜水器抛载后体积、发动机推动力、海水阻力均不变。已知潜水器抛载前总质量为,体积为,海水密度取。潜水器上浮过程受到海水的阻力为,重力加速度可视为常量,大小取。求:(1)潜水器抛载后获得的速度和加速度大小;(2)潜水器从抛载到浮出水面所需的时间。典例4:(2022·陕西·西安中学二模)某游戏装置可以简化为如图所示:游客乘坐滑椅(可视为质点)从固定光滑圆弧轨道上的B点处无初速滑下后冲上静止在光滑水平面上的滑板A.已知游客与滑椅的质量为m,滑板A的质量为2m,滑椅与滑板间的动摩擦因数为μ,滑板A足够长,滑椅不会从滑板表面滑出,圆弧轨道的半径为R,O点为圆弧轨道的圆心,,重力加速度为g,求:(1)滑椅滑到圆弧轨道最低点时对轨道的压力大小;(2)滑椅滑上A后经多长时间不再相对A滑动;(3)若滑块A至少多长才能满足要求。1.(2022·江苏扬州·模拟)如图所示,圆环用细线a悬挂着,将两个质量均为m的有孔小球套在此环上,两球间用细绳b连接,。剪断细绳b后两小球可在环上无摩擦的滑动,两球碰后粘在一起,圆环始终静止,重力加速度为g。试求:(1)细绳b剪断前后瞬间圆环对A球的作用力大小、;(2)碰撞过程A球对B球所做的功W;(3)圆环能始终静止,其质量M至少多大?(结果用小球质量m表示)2.(2022·广东·模拟)滑板运动是一种陆地上的“冲浪运动”,滑板运动员可以在不同的轨道上滑行。如图所示,轨道位于竖直平面内,其中BC和DE为半径和的两段圆弧轨道,BC的圆心为O点,圆心角,DE的圆心为点,D点在点正下方,CD为水平轨道,C、D处与圆弧轨道平滑连接;滑板a和b的质量均为,运动员的质量。某时刻,运动员踩在滑板a上,先从轨道上的A点以的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,滑上CD轨道后,运动员从滑板a跳到静止放置在水平轨道上的滑板b上,并一起向前继续滑动,跳后滑板a则以的速度返回,然后撤掉。运动员和滑板b经CD轨道后冲上DE轨道。滑板和运动员均可视为质点,运动员调整过程中无机械能增加,不计一切阻力,重力加速度取,求:(1)运动员到达B点的速度大小;(2)运动员在D点对滑板b的压力大小。3.(2022·山西省翼城中学校模拟)滑板运动是青少年喜欢的运动之一,某滑板运动场地如图所示,水平面BC与斜面AB和圆弧CD平滑连接,滑板爱好者站在滑板甲上由静止从A点滑下,同时另一完全相同的滑板乙从圆弧上的D点由静止释放。两滑板在水平面上互相靠近时,滑板爱好者跳到滑板乙上,并和滑板乙保持相对静止,此后两滑板沿同一方向运动且均恰好能到达D点,被站在D点的工作人员接收。已知斜面AB的倾角,圆弧CD的半径R=2m,圆心O与D点的连线与竖直方向的夹角,滑板质量m=4kg,滑板爱好者的质量M=60kg,不计空气阻力及滑板与轨道之间的摩擦,滑板爱好者与滑板均可视为质点,取,,。求:(1)滑板乙在下滑过程中经过圆弧最低点时,对C点压力的大小;(2)斜面上AB间的距离。4.(2022·甘肃·永昌县第一高级中学模拟)如图所示,半径为的光滑四分之一圆弧固定轨道AB与粗糙的水平固定轨道BC平滑连接,A点是四分之一圆弧轨道最高点,B点是四分之一圆弧轨道最低点,O为圆心。现有质量为的物块P和质量为的物块Q(均可看成质点),物块Q静止于B点,物块P从A点由静止释放,两物块在B点发生碰撞,碰后物块P恰好能返回到圆弧轨道的D处。已知,物块Q与水平轨道之间的动摩擦因数为,重力加速度g取。求:(1)碰撞后瞬间,物块P对轨道压力的大小;(2)碰撞后物块Q在水平轨道上滑行的最大距离。5.(2022·广西柳州·模拟)如图所示,在光滑的水平地面上,质量为的小球A以的初速度向右做匀速直线运动,在O点处与质量为的静止小球B发生碰撞,碰后小球A的速度大小为,方向向右。小球B与墙壁后等速率弹回,在P点与小球A发生第二次碰撞,碰后小球A的速度大小为,方向依旧向右。求:(1)第一次碰撞后小球B的速度大小;(2)第一次碰撞过程中系统损失的机械能E损;(3)第二次碰撞后小球B的速度大小。6.(2022·福建·模拟)如图所示,一半径的光滑竖直半圆轨道与水平面相切于c点,一质量可视为质点的小物块静止于水平面a点,现用一水平恒力F向左拉物块,经过时间到达b点速度的大小,此时撤去F,小物块继续向前滑行经c点进入光滑竖直圆轨道,且恰能经过竖直轨道最高点d。已知小物块与水平面间的动摩擦因数,重力加速度g取,求:(1)水平恒力F的大小;(2)b、c间的距离L。7.(2022·福建福州·模拟)如图,“云霄弹射”是亚洲最高的自由落体项目。承载机和游客总质量为m,在短时间内由静止状态被弹射至3h高处,紧接着做自由落体运动下落2h,再以恒力制动减速下降h后刚好停在原处,游客同时体验“高空弹射”的快感以及“瞬间失重”的刺激,不计空气阻力和摩擦力,当地重力加速度为g。(1)求弹射系统对承载机和游客所做的功;(2)求下降制动过程中制动恒力的冲量大小。8.(2022·福建漳州·一模)如图,表面光滑的滑板静止在足够长光滑水平地面上,其水平部分AB和四分之一圆轨道BC平滑连接。可视为质点的物体P置于滑板最右端A,长为L的不可伸长的细线,一端拴于,另一端系质量为m的小球Q,Q位于最低点时与物体P等高且恰好接触。将小球Q拉至与等高处(细线伸直)由静止释放后,在最低点与物体P发生弹性正碰(碰撞时间极短)。已知物体P质量为m,滑板质量为2m,圆轨道半径为,重力加速度为g。求:(1)小球Q与物体P碰前瞬间的速度的大小;(2)物体P第一次到达滑板C处时滑板的速度的大小;(3)物体P第一次到达滑板C处时对轨道压力的大小。9.(2022·江苏省昆山中学模拟)“再生制动”是一些汽电混动车辆的常用制动方式。所谓“再生制动”就是车辆靠惯性滑行时带动发电机发电,将部分动能转化为电能储存在电池中。假设一辆汽电混动汽车的质量为m,该汽车设定为前阶段在速度大于时选择再生制动,后阶段速度小于等于时选择机械制动。当它以速度在平直路面上做匀速行驶时,某一时刻开始刹车,前阶段阻力的大小与速度的大小成正比,即。后阶段阻力恒为车重的倍,汽车做匀减速运动,重力加速度为g。求:(1)如果此次刹车的过程中汽电混动汽车动能减小量的倍被转化为电能,那么此次刹车

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服