六五文档>基础教育>试卷>四川省成都市石室中学2023-2024学年高三下学期开学考试文科数学答案
四川省成都市石室中学2023-2024学年高三下学期开学考试文科数学答案
格式:docx页数:14页大小:1.5 M上传日期:2024-02-24 00:08浏览次数:277 侵权/举报

成都石室中学2023-2024年度下期高2024届入学考试文科答案选择题(本题共12道小题,每小题5分,共60分)1.已知全集,能表示集合与,关系的图是 A.B.C.D.【解答】解:全集,集合,1,,,,,能表示集合,,关系的图是.故选:.2.已知向量,,则在方向上投影为 A. B. C. D.解:由,,则在方向上的投影向量为:.故选:.3.技术在我国已经进入高速发展的阶段,手机的销量也逐渐上升,某手机商城统计了最近5个月手机的实际销量,如表所示:时间12345销售量(千只)0.50.81.01.21.5若与线性相关,且线性回归方程为,则下列说法不正确的是 A.由题中数据可知,变量与正相关,且相关系数 B.线性回归方程中 C.残差的最大值与最小值之和为0 D.可以预测时该商场手机销量约为1.72(千只)【解答】解:从数据看随的增加而增加,故变量与正相关,由于各增量并不相等,故相关系数,故正确;由已知数据易得,代入中得到,故错误;,,,,,,,,,,,残差的最大值与最小值之和为0,故正确;时该商场手机销量约为,故正确.故选:.4.方程表示双曲线的必要不充分条件可以是 A.B.,, C.D.【解答】解:若方程表示双曲线,则,解得:,则:方程表示双曲线的必要不充分条件所对应的集合必须真包含,选项故选:.5.执行如图所示的程序框图,若依次输入,,,则输出的结果为 A.B.C. D.以上都不对【解答】解:根据题意,该流程图的作用是求出、、中的最小数,:.,.故选:.6.在中,角、、的对边分别为、、,且的面积,,则A. B. C. D.【解答】解:的面积,可得:,又故选:.7.设等差数列的前项和为,已知,,,则的值为 A.15 B.16 C.17 D.18【解答】解:因为等差数列中,,,,则,两式相加得,,即,因为,所以.故选:.8.如图是某四棱锥的三视图,则该四棱锥的高为 A.1 B.2 C. D.【解答】解:由题意几何体是四棱锥,过作于,在正方体中有平面,所以,又因为,所以平面,所以四棱锥的高为,在中,,,,故,,故,解得.所以该四棱锥的高为:.故选:.9.抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,为线段的中点,设在上的射影为,则的最大值是 A. B. C. D.【解答】解:设,,,在上的射影分别为,,则,,故.又,所以,因为,所以,当且仅当时等号成立,故.故选:.10.如图,正方体的棱长为1,线段上有两个动点,,且,点,分别为,的中点,在侧面上运动,且满足平面,以下命题错误的是 A. B.多面体的体积为定值 C.侧面上存在点,使得 D.直线与直线所成的角可能为解:对于,正方体中,,,、是线段上有两个动点,,故正确;对于,,到的距离为定值,是定值,点到平面的距离为定值,多面体的体积为定值,故正确;对于,,当为中点时,,故正确;对于,取中点,中点,当与或重合时,直线与直线所成的角最大,,故错误.故选:.11.已知直线与圆心为且半径为3的圆相交于,两点,直线与圆交于,两点,则四边形的面积的值最大是 A. B. C. D.【解答】解:根据题意,圆的圆心为且半径为3,则圆的方程为,即,直线与圆相交于,两点,则有,解可得:或,即、的坐标为,,则,且的中点为,,直线,变形可得,直线恒过定点,,设,,当与垂直时,四边形的面积最大,此时的方程为,变形可得,经过点,则此时,故的最大值,故,故选:.12.已知函数在区间上有且仅有4个极值点,给出下列四个结论:①在区间上有且仅有3个不同的零点;②的最小正周期可能是;③的取值范围是;④在区间上单调递增.其中正确结论的个数为(    )A.1 B.2 C.3 D.412.C【分析】令,,则,,结合条件可得有4个整数符合题意,可求出的取值范围,再利用三角函数图象性质逐项分析即可得出结论.【详解】由函数,令,可得,,因为在区间上有且仅有4个极值点,即可得有且仅有4个整数符合题意,解得,即,可得,即,解得,即③正确;对于①,当时,,即可得,显然当时,在区间上有且仅有3个不同的零点;当时,在区间上有且仅有4个不同的零点;即①错误;对于②,的最小正周期为,易知,所以的最小正周期可能是,即②正确;对于④,当时,;由可知,由三角函数图象性质可知在区间上单调递增,即④正确;即可得②③④正确.故选:C第Ⅱ卷(共90分)二、填空题(本题共4道小题,每小题5分,共20分)13.若,则的共轭复数为_________【详解】依题意,所以的共轭复数为.14.向面积为2的内部投掷一点,则的面积小于1的概率为______【详解】如图所示,取的中点,则为的中位线,当点P落在四边形内时的面积小于,已知总事件为的面积,,所以所求事件的概率为.15.已知为等腰三角形,其中,点D为边AC上一点,.以点B、D为焦点的椭圆E经过点A与C,则椭圆E的离心率的值为.详解】连接点与中点,即有,由,故,由,则,即,由椭圆定义可得、,故,即,则、,由故,则,即,解得(负值舍去).故答案为:.16.若函数与的图像在实数集上有且只有3个交点,则实数的取值范围为__________.【详解】即仅有3个解,显然不是该方程的解,则,即仅有3个解,设,定义域关于原点对称,且满足。即为奇函数,考虑时的情况,,,当时,,即在上单调递增,当时,,即在上单调递减,则函数极大值为,且当时,;当时,;结合函数为奇函数,即可作出函数的图象如图示:由于仅有3个解,故与函数的图象仅有3个交点,结合图象可得或,即或,故答案为:或三、解答题(本题共6道小题,共70分)17.已知数列的首项为,且满足,数列满足.(Ⅰ)求的通项公式;(Ⅱ)设数列的前项和为,求.【解答】解:(1)证明:,,,,当时,上式成立,,;………………………………………5分(2)由(1)得,①,②,①②得,,.………………………………………12分18.某企业有甲、乙、丙三个部门,其员工人数分别为24,16,8.现在医务室通过血检进行一种流行疾病的检查.(Ⅰ)现采用分层抽样的方法从中抽取6人进行前期调查,求甲、乙、丙三个部门的员工中分别抽取的人数和每一位员工被抽到的概率?(Ⅱ)将该企业所有员工随机平均分成4组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.已知每组化验结果呈阴性的概率都为,记,2,3,为“第组化验结果呈阴性”,,2,3,为“第组化验结果呈阳性”,请计算恰有两个组需要进一步逐个化验的概率.【解答】解:(1)由已知,甲、乙、丙三个部门的员工人数之比为,由于采用分层抽样的方法从中抽取6人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,1人,该企业总共有名员工,记事件:“任意一位被抽到”,由于每位员工被抽到的概率相等,每位员工被抽到的概率为.………………………………………5分(2)记“恰有两个组需要进一步逐个化验”为事件,所有分组化验的结果有16种,分别为:,,,,,,,,,,,,,,,,,,,,,………………………………………8分其中,恰有两个组化验结果呈阳性,即需要进一步逐个化验的情况有6种,分别为:,,,,,,,,每组化验结果呈阴性与阳性互为对立,每组化验呈阳性的概率都为,………………………………………10分则上述每个结果出现的可能性都相等,恰有两个组需要进一步逐个化验的概率为(B).………………………………………12分19.如图,已知梯形与所在的平面垂直,,,,,,,,连接,.(Ⅰ)若为边上一点,,求证:平面;(Ⅱ)求多面体的体积.【解答】(Ⅰ)证明:在上取一点,使得.延长和交于点,由相似三角形原理可得,。且,是平行四边形平面,平面;………………………………………6分(Ⅱ)解:连接,,则.………………………12分20.已知椭圆的离心率为,焦距为,过的左焦点的直线与相交于、两点,与直线相交于点.(Ⅰ)若,求证:;(Ⅱ)过点作直线的垂线与相交于、两点,与直线相交于点.求的最大值.【详解】(1)证明:设、,因为椭圆的焦距为,所以,解得.又因为椭圆的离心率,所以,所以,所以椭圆的方程为.因为直线经过、,,所以,直线的方程为,设点、,联立可得,由,得,.        ……………………………………………………………………….2分所以,,因此,.……………………………………………………………………….5分(2)证明:若直线、中两条直线分别与两条坐标轴垂直,则其中有一条必与直线平行,不合乎题意,所以,直线的斜率存在且不为零,设直线方程为,则直线方程为,其中.联立可得,设、,则,由韦达定理可得,,………………………………………………………….6分易知且,将代入直线的方程可得,即点,所以,……………………………………………………….8分同理可得,…………………………………………………….9分所以,……………………………………………….11分当且仅当时,等号成立,因此,的最大值为.……………………………………………….12分21.已知函数.(Ⅰ)若在区间上恒成立,求实数的取值范围;(Ⅱ)若函数和有公切线,求实数的取值范围.【详解】(1)由题意,当时,设,则,,……………………………….1分令,得(舍负)在上单调递减,在上单调递增,.……………………………….2分根据题意的取值范围为.……………………………….4分(2)设函数在点处与函数在点处有相同的切线,则,,代入得.问题转化为:关于的方程有解,……………………………….6分设,则函数有零点,,当时,.问题转化为:的最小值小于或等于0.………………………………7分,设,则当时,,当时,.在上单调递减,在上单调递增,的最小值为.……………………………9分由知,故.设,则,故在上单调递增,当时,,的最小值等价于.……………………………11分又函数在上单调递增,.…………………………12分22.在直角坐标系中,曲线的参数方程为(t为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程.(Ⅰ)求和的直角坐标方程;(Ⅱ),直线与C交于MN两点,求两点的极坐标【详解】(1)方法一:曲线:由题意得,即,然后代入,即可得到曲线C的普通方程,………………3分备注:若没有扣点,则扣1分而直线,将代入其极坐标方程即可得其直角坐标方程.………………2分方法二:因为,所以C的普通方程为,直线l的直角坐标方程为:;方法三:由万能公式:,令,则有,由椭圆的常用参数方程可得:,直线的方程为:.(2)设,联立得.解得,点的坐标为,点的坐标为………………6分所以点的极坐标为,………………8分点的极径为………………10分23.已知函数,.(Ⅰ)求函数的最小值;(Ⅱ)设,求证:.【详解】(1)由题设,………………2分而在、、上均能取到最小值,………………3分对于在上递减,上为常数,上递增,且连续,所以的最小值在上取得,即时,最小值为.………………5分(2)由,仅当取等号,.………………7分要证,即证,则,需证,而,即,所以恒成立,故得证..………………10分备注:此题可用其它方法证明

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服