2024年新高考新结构数学模拟卷(二)(模拟测试)(考试时间:120分钟试卷满分:150分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。写在试卷草稿纸和答题卡上的非答题区域均无效。4.考试结束后,请将本试卷和答题卡一并上交。一、单选题(本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.展开式中第3项的系数是( )A.90 B.-90 C.-270 D.2702.在等差数列中,若,则公差A.1 B.2 C.3 D.43.已知向量,满足,且,则向量在向量上的投影向量为( )A.1 B. C. D.4.在中,“”是“为钝角三角形”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.已知三棱锥,是以为斜边的直角三角形,为边长是2的等边三角形,且平面平面,则三棱锥外接球的表面积为( )A. B. C. D.6.血氧饱和度是呼吸循环的重要生理参数.人体的血氧饱和度正常范围是,当血氧饱和度低于时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型:描述血氧饱和度随给氧时间t(单位:时)的变化规律,其中为初始血氧饱和度,K为参数.已知,给氧1小时后,血氧饱和度为.若使得血氧饱和度达到,则至少还需要给氧时间(单位:时)为( )(精确到0.1,参考数据:)A.0.3 B.0.5 C.0.7 D.0.97.已知双曲线的左,右焦点分别为,过的直线与双曲线分别在第一、二象限交于两点,内切圆的半径为,若,,则双曲线的离心率为( )A. B. C. D.8.在锐角中,角所对的边分别为.若,则的取值范围为( )A. B. C. D.二、多选题(本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对得6分,部分选对得部分分,有选错得0分)9.已知为复数,设,,在复平面上对应的点分别为A,B,C,其中O为坐标原点,则( )A. B.C. D.10.如图,已知抛物线的焦点为,抛物线的准线与轴交于点,过点的直线(直线的倾斜角为锐角)与抛物线相交于两点(A在轴的上方,在轴的下方),过点A作抛物线的准线的垂线,垂足为,直线与抛物线的准线相交于点,则( )A.当直线的斜率为1时, B.若,则直线的斜率为2C.存在直线使得 D.若,则直线的倾斜角为11.已知函数定义域为R,满足,当时,.若函数的图象与函数的图象的交点为,,,(其中表示不超过的最大整数),则( )A.是偶函数 B. C. D.三、填空题(本题共3小题,每小题5分,共15分)12.已知的定义域为A,集合,若,则实数a的取值范围是.13.如图,圆锥底面半径为,母线PA=2,点B为PA的中点,一只蚂蚁从A点出发,沿圆锥侧面绕行一周,到达B点,其最短路线长度为,其中下坡路段长为. 14.在同一平面直角坐标系中,P,Q分别是函数和图象上的动点,若对任意,有恒成立,则实数m的最大值为.四、解答题(本题共5小题,共77分,其中15题13分,16题15分,17题15分,18题17分,19题17分,解答应写出文字说明、证明过程或演算步骤)15.已知函数,.(1)求证:当,;(2)若,恒成立,求实数的取值范围.16.某公司是一家集无人机特种装备的研发、制造与技术服务的综合型科技创新企业.该公司生产的甲、乙两种类型无人运输机性能都比较出色,但操控水平需要十分娴熟,才能发挥更大的作用.已知在单位时间内,甲、乙两种类型无人运输机操作成功的概率分别为和,假设每次操作能否成功相互独立.(1)随机选择两种无人运输机中的一种,求选中的无人运输机操作成功的概率;(2)操作员连续进行两次无人机的操作有两种方案:方案一:在初次操作时,随机选择两种无人运输机中的一种,若初次操作成功,则第二次继续使用该类型设备;若初次操作不成功,则第二次使用另一类型进行操作;方案二:在初次操作时,随机选择两种无人运输机中的一种,无论初次操作是否成功,第二次均使用初次所选择的无人运输机进行操作.假定方案选择及操作不相互影响,试比较这两种方案的操作成功的次数的期望值.17.在图1所示的平面多边形中,四边形为菱形,与均为等边三角形.分别将沿着,翻折,使得四点恰好重合于点,得到四棱锥.(1)若,证明:;(2)若二面角的余弦值为,求的值.18.在平面直角坐标系中,双曲线的左、右焦点分别为的离心率为2,直线过与交于两点,当时,的面积为3.(1)求双曲线的方程;(2)已知都在的右支上,设的斜率为.①求实数的取值范围;②是否存在实数,使得为锐角?若存在,请求出的取值范围;若不存在,请说明理由.19.已知无穷数列满足,其中表示x,y中最大的数,表示x,y中最小的数.(1)当,时,写出的所有可能值;(2)若数列中的项存在最大值,证明:0为数列中的项;(3)若,是否存在正实数M,使得对任意的正整数n,都有?如果存在,写出一个满足条件的M;如果不存在,说明理由.
2024年新高考新结构数学模拟卷(二)(原卷版)_20240229_233623
你可能还喜欢
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
相关推荐
-
2024年新高考新结构数学模拟卷(三)(原卷版)
2024-03-02 00:35
4页 -
2024年新高考新结构数学模拟卷(三)(原卷版)_20240229_233623
2024-03-02 00:35
4页 -
2024年新高考新结构数学模拟卷(一)(原卷版)
2024-03-02 00:35
4页 -
2024年新高考新结构数学模拟卷(一)(原卷版)_20240229_233621
2024-03-02 00:35
4页 -
2024年新高考新结构数学模拟卷(二)(解析版)
2024-03-02 00:35
21页 -
专题01 数列大题(原卷版)
2024-03-02 00:35
8页 -
专题01 数列大题(原卷版)_20240229_233544
2024-03-02 00:35
8页 -
2024年新高考新结构数学模拟卷(二)(解析版)_20240229_233624
2024-03-02 00:35
21页