高三入学摸底测试数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项,只有一项是符合题目要求的.1.命题的否定为()A.∀x>0,x2+x+1>0 B.∀x<0,x2+x+1>0C.∃x>0,x2+x+1>0 D.∃x≤0,x2+x+1>0【答案】C【解析】【分析】根据全称命题的否定:改变量词,否定结论,可得结果.【详解】命题的否定为.故选:.【点睛】本题考查全称命题否定的改写,要注意量词和结论的变化,难度容易.2.设,,若,则实数的值的个数为()A.2 B.3 C.4 D.5【答案】B【解析】【分析】根据已知求出A,由已知得出.分,,三种情况,求解即可得出答案.【详解】由,可知集合最多只有一个元素.解可得,,所以,.因为,所以,又集合B最多只有一个元素,所以,,,.当时,有,此时有;当时,有,此时;当时,有,此时.综上所述,,或,或.故选:B.3.已知展开式的二项式系数之和为64,则展开式的第5项是()A.6 B.15 C. D.【答案】D【解析】【分析】根据二项式系数之和为64求出,从而求出展开式的通项公式,求出第5项.【详解】由题意得:,解得:,则展开式的通项公式为,第五项是故选:D4.已知盒子中有6个大小相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两球,每次取一球,记第一次取出的球的数字是,第二次取出的球的数字是.若事件“为偶数”,事件“,中有偶数且”,则()A. B. C. D.【答案】C【解析】【分析】根据已知条件,结合条件概率的计算公式,即可求解.【详解】由题意,有放回的随机取两球,所以,因为事件“,中有偶数且”,所以,因为事件“为偶数”,事件“,中有偶数且”,所以事件“,均为偶数且”,所以,所以.故选:.5.设等差数列的公差为,则“”是“为递增数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】A【解析】【分析】利用等差数列通项公式求出,再利用单调数列的定义,结合充分条件、必要条件的意义判断即得.【详解】由等差数列an的公差为,得,则,当时,,而,则,因此,为递增数列;当为递增数列时,则,即有,整理得,不能推出,所以“”是“为递增数列”的充分不必要条件.故选:A6.已知,,且,则的最小值是()A.4 B.5 C.7 D.9【答案】C【解析】【分析】将式子变形为,即可利用不等式求解,或者将式子变形为,结合不等式即可求解.【详解】方法一:因为,故,解得,故,当且仅当,即,时等号成立.方法二:因为,则,且,故,故,当且仅当,即,时等号成立.故选:C.7.过双曲线的左焦点作圆的切线,切点为,直线交直线于点.若,则双曲线的离心率为()A. B. C. D.【答案】D【解析】【分析】取右焦点,连接、,作于点,由题意结合几何性质可得相应的边长及角度间的关系,借助余弦定理列出与、、有关齐次式,计算即可得.【详解】取右焦点,连接、,作于点,由为圆的切线,故,又,为中点,故为中点,又,故为中点,,则,,则,,由直线为双曲线的渐近线,故有,则,在中,由余弦定理可得,则,即,即,化简得,即,故.故选:D.【点睛】关键点点睛:本题考查双曲线离心率的求法,关键点在于借助题目所给条件,从几何的角度构造辅助线,得到新的长度关系与角度关系,从而结合题意构造相应与、、有关齐次式,得到离心率.8.已知函数,若关于的不等式恒成立,则实数的取值范围()A. B. C. D.【答案】A【解析】【分析】由变形得出,构造函数,其中,利用导数分析函数的单调性,可得出,进一步得出,利用导数求出函数的最小值,可得出关于实数的不等式,解之即可.【详解】因为,由,可得,所以,,令,其中,则,所以,函数在上单调递增,由可得,所以,,所以,,其中,令,其中,则.当时,,此时函数单调递减,当时,,此时函数单调递增,所以,,所以,,解得故选:A.【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数的取值范围,解本题的关键在于将不等式变形为,通过构造函数,进一步将不等式变形为,从而结合函数的单调性与参变量分离法求解.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选错得0分.9.下列命题中,正确的是()A.已知随机变量服从正态分布,若,则B.若甲、乙两组数据相关系数分别为0.66和,则甲组数据的线性相关性更强C.用表示次独立重复试验中事件发生的次数,为每次试验中事件发生的概率,若,则D.已知随机变量的分布列为,则【答案】CD【解析】【分析】利用正态分布的对称性求出可判断A;根据线性相关性的性质可判断B;利用二项分布的期望、方差求出可判断C;利用裂项相消求和、随机变量的概率和为1求出可判断D.【详解】对于A,因为,所以,所以,故A错误;对于B,因为0.66,则乙组数据的线性相关性更强,故B错误;对于C,若,则,解得,故C正确;对于D,因为,所以,解得,故D正确.故选:CD.10.已知函数,则下列说法正确的有()A.若是上的增函数,则B.当时,函数有两个极值C.当时,函数有两零点D.当时,在点处的切线与只有唯一个公共点【答案】AB【解析】【分析】对A:借助导数,令导函数大于等于零恒成立即可得;对B:借助导数研究函数的单调性即可得;对C:举出反例即可得;对D:计算出在点处的切线方程后,联立,解出方程即可得.【详解】对A:,由是上的增函数,则有恒成立,即,解得,故A正确;对B:由,则当时,,故有两个不等实根,设这两个根分别为且,则当时,,当时,,即在上单调递增,在上单调递减,故函数有两个极值,故B正确;对C:令,对,有,若,则,此时有两个非零不等实根,即有三个零点,故C错误;对D:当时,,则,,由,则在点处的切线为,令,即有,解得或,故在点处的切线与有两个公共点,故D错误.故选:AB.11.在正三棱柱中,,点P满足,其中,则()A.当时,最小值为B.当时,三棱锥的体积为定值C.当时,平面平面D.若,则P的轨迹长度为【答案】BCD【解析】【分析】当时,点在上,把平面与平面展在一个平面上,可判定A错误;当时,得到点在上,证得平面,求得三棱柱的体积定值,可判定B正确;当时,得到点为的中点,取的中点,证得平面,得到平面,可判定C正确;由点P满足,得到点在矩形内,取的中点,证得平面,得到,求得,得出以点的轨迹,可判定D正确.【详解】对于A中,当时,,可得点在上,以为轴,把平面与平面展在一个平面上,如图所示,连接交于点,此时最小值为,所以A错误;对于B中,当时,,可得点在上,取的中点,在等边中,可得,且,因为平面,且平面,所以,又因且平面,所以平面,即为三棱锥的高,所以三棱锥的体积为为定值,所以B正确;对于C中,当时,,可得点为的中点,如图所示,取的中点,分别连接,可得且,所以为平行四边形,所以,因为平面,平面,所以,又因为,且,平面,所以平面,因为,所以平面,又因为平面,所以平面,所以C正确;对于D中,由点P满足,其中,可得点在矩形内(包含边界),取的中点,连接和,因为平面,且平面,所以,又因为,且平面,所以平面,因为平面,所以,且,在直角中,可得,所以点的轨迹是以为圆心,半径为的半圆,其轨迹长度为,所以D正确.故选:BCD【点睛】解题方法点拨:1、立体几何中的动态问题主要包括:空间动点轨迹的判断,求解轨迹的长度及动角的范围等问题;2、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;3、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;4、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在.三、填空题:本大题共3小题,每小题5分,共15分.12.抛物线的准线方程是___________________.【答案】【解析】【分析】将化成抛物线的标准方程,利用抛物线的性质求解即可.【详解】由得:,所以,即:所以抛物线的准线方程为:.【点睛】本题主要考查了抛物线的简单性质,属于基础题.13.由0,1,2,3,4,5这6个数字可以组成______个无重复数字的四位偶数.(用数字作答).【答案】156【解析】【分析】先确定四位数的偶数的个数等于排成一列的四位数字且第四位为偶数的个数减去第一位为0且第四位数字为偶数的的个数,再利用排列组合知识求结果.【详解】由0,1,2,3,4,5这6个数字中任取四个数字排成一列,第四位数字为偶数的共有种排法,第一位为0且第四位数字为偶数的共有种排法,故由0,1,2,3,4,5这6个数字可以组成无重复数字的四位偶数的个数为.故答案为:.14.甲、乙、丙三个人去做相互传球训练,训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出.如果第一次由甲将球传出,设次传球后球在甲手中的概率为,则______;______.【答案】①.##0.25②.【解析】【分析】设出事件,由题意得到,由互斥事件的概率加法公式和全概率公式得到概率的递推式,接着构造等比数列,求出其通项公式即得.【详解】设“经过次传球后,球在甲的手中”,则事件的概率即,则依题意,,则,即,(*)因代入解得,,;由(*)可得,,且,故数列是以为首项,为公比的等比数列,于是,,则得,.故答案为:;.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,在四棱锥中,底面为直角梯形,,,侧面底面且,为中点.(1)求证:;(2)求二面角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)建立空间直角坐标系,计算对应线段的方向向量,利用向量的数量积为零,证明可得;(2)利用空间坐标计算两个面的法向量,然后利用法向量与二面角的关系计算二面角余弦值,最后计算正弦值即可.【小问1详解】取中点,连接,由,得,又平面平面,平面平面,平面,则平面,过作,由,得,,而,平面,则,,以为原点,直线,,分别为,,轴建立空间直角坐标系,如图:由,,得,,,,,中点,则,,因此,即,所以【小问2详解】由(1)知,,,,设平面的法向量n=x,y,z,则,令,得,设平面的法向量,则,令,得,设二面角大小为,则,所以二面角的正弦值.16.为了了解高中学生课后自主学习数学时间(x分钟/每天)和他们的数学成绩(y分)的关系,某实验小组做了调查,得到一些数据(表一).编号12345学习时间x3040506070数学成绩y65788599108(1)求数学成绩与学习时间的相关系数(精确到0.001);(2)请用相关系数说明该组数据中与之间的关系可用线性回归模型进行拟合,并求出关于的回归直线方程,并由此预测每天课后自主学习数学时间为100分钟时的数学成绩(参考数据:,的方差为200);(3)基于上述调查,某校提倡学生周末在校自主学习.经过一学期的实施后,抽样调查了220位学生.按照是否参与周末在校自主学习以及成绩是否有进步统计,得到列联表(表二).依据表中数据及小概率值的独立性检验,分析“周末在校自主学习与成绩进步”是否有关.没有进步有进步合计参与周末在校自主学习35130165未参与周末不在校自主学习253055合计60160220附:方差:相关系数:回归方程中斜率和截距的最小二乘估计公式分别为,,.0.100.050.0100.0050.0012.7063.8416.6357.87910.828【答案】(1)(2)答案见解析(3)答案见解析【解析】【分析】(1)根据题意分别求出,,代入到相关系数:,求得结果即可;(2)知接近1,故与之
四川省成都列五中学2024-2025学年高三上学期入学摸底测试数学试题 Word版含解析
你可能还喜欢
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
相关推荐
-
湖南省益阳市2024-2025学年高三上学期9月第一次教学质量检测物理试题
2024-09-14 00:35
7页 -
2025陕西省安康市高三上学期开学联考地理试题+答案
2024-09-14 00:44
10页 -
2025陕西省安康市高三上学期开学联考化学答案
2024-09-14 00:44
6页 -
2025陕西省安康市高三上学期开学联考生物试题(有解析)
2024-09-14 00:44
12页 -
2025陕西省安康市高三上学期开学联考物理解答
2024-09-14 00:44
6页 -
2025陕西省安康市高三上学期开学联考物理试题
2024-09-14 00:44
7页 -
2025陕西省安康市高三上学期开学联考历史试题+答案
2024-09-14 00:44
11页 -
2025陕西省安康市高三上学期开学联考政治试题
2024-09-14 00:44
8页