六五文档>基础教育>试卷>浙江省杭州第二中学2023届高三下学期3月月考数学试题 Word版无答案
浙江省杭州第二中学2023届高三下学期3月月考数学试题 Word版无答案
格式:docx页数:6页大小:668.1 K上传日期:2023-11-22 14:57浏览次数:222 侵权/举报

杭州二中2022学年第二学期高三年级3月考试数学试卷第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.2.已知复数的实部为,则的值为()A.2 B.4 C. D.3.已知圆锥的侧面展开图是一个半径为4,弧长为的扇形,则该圆锥的表面积为()A. B. C. D.4.2022年10月22日,中国共产党第二十次全国代表大会胜利闭幕.某班举行了以“礼赞二十大、奋进新征程”为主题的联欢晚会,原定的5个学生节目已排成节目单,开演前又临时增加了两个教师节目,如果将这两个教师节目插入到原节目单中,则这两个教师节目相邻的概率为()A. B. C. D.5.已知,,,,过点作垂直于点,点满足,则的值为()A. B.C. D.6.已知,则的大小关系为()A B.C. D.7.已知,是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,则椭圆和双曲线的离心率乘积的最小值为()A. B. C. D.8.已知在矩形中,,,,分别在边,上,且,,如图所示,沿将四边形翻折成,设二面角的大小为,在翻折过程中,当二面角取得最大角,此时的值为()A. B. C. D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.用简单随机抽样从含有50个个体的总体中抽取一个容量为10的样本,个体被抽到的概率是0.2B.已知一组数据1,2,m,6,7的平均数为4,则这组数据的方差是5C.数据27,12,14,30,15,17,19,23的50%分位数是17D.若样本数据,,…,的标准差为8,则数据,,…,的标准差为1610.已知函数,下列关于该函数结论正确的是()A.的图象关于直线对称 B.的一个周期是C.的最大值为 D.是区间上的减函数11.已知正四棱锥的所有棱长均为,,分别是,的中点,为棱上异于,的一动点,则以下结论正确的是()A.异面直线、所成角的大小为B.直线与平面所成角的正弦值为C.周长的最小值为D.存在点使得平面12.已知定义域为的函数在上单调递增,,且图像关于对称,则()A. B.周期C.在单调递减 D.满足第II卷(非选择题)三、填空题:本题共4小题,每题5分,共20分.13.已知抛物线E:的焦点为,过点的直线与抛物线交于两点,与准线交于点,为的中点,且,则__________.14.在的展开式中的系数为,则_______.15.已知正实数满足,则的最小值是___________.16.函数,其中为实数,且.已知对任意,函数有两个不同零点,取值范围为____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知分别为内角的对边,若同时满足下列四个条件中的三个:①;②;③;④.(1)满足有解三角形的序号组合有哪些?(2)请在(1)所有组合中任选一组,求对应的面积.18.已知数列满足.(1)求证:是等差数列;(2)令(表示不超过最大整数.提示:当时,),求使得成立的最大正整数的值.19.如图,四棱锥P-ABCD的底面为梯形,底面ABCD,,,,E为PA的中点.(1)证明:平面平面BCE;(2)若二面角P-BC-E的余弦值为,求三棱锥P-BCE的体积.20.法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包.该面包店的面包师声称自己所出售的面包的平均质量是1000,上下浮动不超过50.这句话用数学语言来表达就是:每个面包的质量服从期望为1000,标准差为50的正态分布.(1)已知如下结论:若,从的取值中随机抽取个数据,记这个数据的平均值为,则随机变量.利用该结论解决下面问题.(i)假设面包师说法是真实的,随机购买25个面包,记随机购买25个面包的平均值为,求;(ii)庞加莱每天都会将买来的面包称重并记录,25天后,得到的数据都落在上,并经计算25个面包质量的平均值为.庞加莱通过分析举报了该面包师,从概率角度说明庞加莱举报该面包师的理由;(2)假设有两箱面包(面包除颜色外,其他都一样),已知第一箱中共装有6个面包,其中黑色面包有2个;第二箱中共装有8个面包,其中黑色面包有3个.现随机挑选一箱,然后从该箱中随机取出2个面包.求取出黑色面包个数的分布列及数学期望.附:①随机变量服从正态分布,则,;②通常把发生概率小于的事件称为小概率事件,小概率事件基本不会发生.21.已知抛物线,开口向上的抛物线与有一个公共点,且在该点处有相同的切线,(1)求所有抛物线的方程;(2)设点P是抛物线上的动点,且与点T不重合,过点P且斜率为的直线交抛物线于两点,其中,问是否存在实常数,使得为定值?若存在,求出实常数;若不存在,说明理由.22.已知.(1)当时,求最大值;(2)若存在使,得关于的方程有三个不相同的实数根,求实数的取值范围.

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服