六五文档>基础教育>试卷>2023届北京市东城区高三下学期综合练习(一)东城区2022-2023第二学期高三一模数学试题答案终
2023届北京市东城区高三下学期综合练习(一)东城区2022-2023第二学期高三一模数学试题答案终
格式:docx页数:7页大小:493.3 K上传日期:2023-11-22 23:24浏览次数:455 侵权/举报

北京市东城区2022—2023学年度第二学期高三综合练习(一)数学参考答案及评分标准2023.3一、选择题(共10小题,每小题4分,共40分)(1)B (2)A (3)D (4)B(5)C(6)B (7)A (8)D (9)B(10)C二、填空题(共5小题,每小题5分,共25分) (11)(12)(13)(答案不唯一)(14)(15)②=3\*GB3③三、解答题(共6小题,共85分)(16)(共13分)解:(Ⅰ)因为===所以的最小正周期为………………6分(Ⅱ)由题设,,由是该函数零点可知,,即.故或,解得或.因为,所以的最小值为.………13分(共13分)解:(Ⅰ)从甲、乙两名同学共进行的13次测试中随机选取一次,有13种等可能的情形,其中有4次成绩超过90分.则从甲、乙两名同学共进行的13次测试中随机选取一次,该次成绩超过90分的概率为.…3分(Ⅱ)随机变量的所有可能取值为1,2,3.;;则随机变量的分布列为:123故随机变量的数学期望.………11分(Ⅲ).………13分(18)(共15分)解:(Ⅰ)连接,,.因为长方体中,∥且,所以四边形为平行四边形.所以为的中点,在△中,因为,分别为和的中点,所以.因为平面,平面,所以平面.………………6分(=2\*ROMANII)选条件=1\*GB3①:.(ⅰ)连接.因为长方体中,所以.在△中,因为为的中点,,所以.如图建立空间直角坐标系,因为长方体中,,则,,,,,,.所以,,.xyz设平面的法向量为,则即令,则,,可得.设平面的法向量为,则即令,则,,所以.设平面与平面的夹角为,则所以平面与平面的夹角的余弦值为.(ⅱ)因为,所以点到平面的距离为.………………15分选条件=2\*GB3②:与平面所成角为.连接.因为长方体中,平面,平面,所以.所以为直线与平面所成角,即.所以△为等腰直角三角形.因为长方体中,所以.所以.以下同选条件=1\*GB3①.(19)(共15分)解:(Ⅰ)当时,,定义域为.,令,得,当时,,当时,,所以的单调递增区间为.………………5分(Ⅱ)令, 则.当时,令,得.当时,,单调递减;当时,,单调递增;所以当时,最小值为.当时,的最小值为1,所以的最小值为.………………11分(=3\*ROMANIII)由(Ⅱ)知在上单调递减,在上单调递增,又,,所以,,,所以⫋.………………15分(20)(共14分)解:(Ⅰ)由题设,得解得.所以椭圆的方程为.………………5分(Ⅱ)直线的方程为.由得.由,得.设,则,.直线的方程为.令,得点的横坐标为.同理可得点的横坐标为..因为点坐标为,则点为线段的中点,所以.………………14分(21)(共15分)解:(Ⅰ)满足条件的数表为,所以的值分别为5,5,6.…………5分(Ⅱ)若当取最大值时,存在,使得.由数表具有性质可得为奇数,不妨设此时数表为.①若存在,使得,交换和的位置,所得到的新数表也具有性质,调整后数表第一行和大于原数表第一行和,与题设矛盾,所以存在,使得.②若对任意的,都有,交换和的位置,所得到的新数表也具有性质,此时转化为①的情况.综上可知,存在正整数,使得.………………10分(Ⅲ)当n为偶数时,令,对任意具有性质数表,一方面,,因此.①另一方面,,因此.②记.由①+②得.又,可得.构造数表可知数表具有性质,且.综上可知,当n为偶数时,的最大值为.………………15分

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服