棠湖中学高2021级高三10月考试数学(理工类)本试卷共4页,23小题,满分150分.考试用时120分钟.第I卷选择题(60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则A. B. C. D.【答案】B【解析】【详解】由题意,集合,所以,故选B.2.下列函数中,在区间上单调递增的是()A. B. C. D.【答案】D【解析】【分析】由二次函数,分式函数,指数函数,对数函数的函数特征分别讨论单调区间可求解.【详解】选项A是开口向下,对称轴为x=0的二次函数,所以在是单调递减,不符.选项B为分式函数,定义域为,所以只有两个减区间,也不符,选项C是底数属于(0,1)的指数函数,所以在R上单调递减,不符.选项D是定义在上以10为底的对数函数,所以在上单调递增,符合,故选:D.3.已知,条件,条件,则是的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】A【解析】【分析】利用基本不等式证明充分性,利用特殊值证明必要性不成立,即可判断;【详解】解:因,由,得:,则,当且仅当时取等号,因此推得出,即充分性成立,取,满足,但,即推不出,即必要性不成立,所以是的充分不必要条件,故选:A4.古代人家修建大门时,贴近门墙放置两个石墩.石墩其实算是门墩,又称门枕石,在最初的时候起支撑固定院门的作用,为的是让门栓基础稳固,防止大门前后晃动.不过后来不断演变,一是起到装饰作用,二是寓意“方方圆圆”.如图所示,画出的是某门墩的三视图,则该门墩从上到下分别是()A.半圆柱和四棱台 B.球的和四棱台C.半圆柱和四棱柱 D.球的和四棱柱【答案】D【解析】【分析】根据几何体的三视图直观想象出几何体的直观图,从而可得几何体的结构特征.【详解】由几何体的三视图可知:该几何体上面是球的,下面是放倒的四棱柱.故选:D【点睛】本题考查了几何体的三视图还原直观图,考查了空间想象能力,属于基础题.5.已知,且,则的值为()A B. C. D.【答案】A【解析】【分析】根据诱导公式及二倍角公式即得.【详解】,,.故选:A.6.弹簧上挂的小球做上下振动时,小球离开平衡位置的距离随时间的变化曲线是一个三角函数的图像(如图所示),则这条曲线对应的函数解析式是()A.B.C.D.【答案】A【解析】【分析】由函数的部分图像得到或,并分别讨论或时的解析式【详解】解:设该曲线对应的函数解析式为,由图可知,或,,则,当时,,由,解得,因为,所以,所以;当时,,由,解得,因为,所以,所以;故选:A7.方程的两根为,,且,则A. B. C. D.或【答案】B【解析】【分析】利用韦达定理求出与的值,由两角和的正切公式求得,从而可得结果.【详解】∵方程的两根为,,且,∴,,再结合,故,,∴,故.又,∴,故选B.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.8.将函数的图象向右平移个单位长度,再将所得图象上所有点的横坐标变为原来的()倍(纵坐标不变),得到函数的图象,若函数在区间上是增函数,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】先根据图象变换求解出的解析式,然后结合正弦函数的单调增区间以及的周期的范围,列出关于的不等式组并求解出的取值范围.【详解】将函数的图象经过变化后得到的图象,令(),即(),∵在上是增函数,∴,又,∴,令时,解得,当且时,不符合题意,故选:B.【点睛】思路点睛:已知正、余弦型函数(或)的单调区间求解参数范围的步骤:(1)根据函数以及单调性列出关于的不等式;(2)将单调区间的端点值代入关于的不等式中,同时注意到单调区间的长度不会超过半个周期;(3)由(1)(2)列出关于参数的所有不等式,由此求解出参数范围.9.函数,则()A.0 B. C.4 D.1【答案】C【解析】【分析】首先设,则,根据对数的运算法则知,再计算即可.【详解】设,因为.所以.故选:C【点睛】本题主要考查对数的运算,熟练掌握对数的运算法则为解题的关键,属于中档题.10.设,,,则()A. B. C. D.【答案】B【解析】【分析】首先构造函数,利用导数判断函数的单调性,再利用,判断函数值的大小,即可判断选项.【详解】,,,设,且,令,得,当时,,函数单调递减,当时,,函数单调递增,因为,且,所以,即.故选:B11.在正三棱锥P-ABC中,D,E分别为侧棱PB,PC的中点,若,且,则三棱锥P-ABC外接球的表面积为()A. B. C. D.【答案】C【解析】【分析】结合题意,利用三角形相似得到,取线段PE的中点F,连接DF,AF,利用余弦定理和勾股定理求出外接球半径,代入外接球的表面积公式即可求解.【详解】如图,因为P-ABC为正三棱锥,所以,.取线段PE的中点F,连接DF,AF,因为D为PB的中点,所以,.因为AD⊥BE,所以.在中,,由勾股定理,得.设,PA=x,在中,由余弦定理的推论,得①.同理,在中,由余弦定理的推论,得②.联立①②,解得,.在中,由余弦定理,得,所以.取的中心,连接,,则平面ABC,三棱锥P-ABC的外接球球心O在上,连接OA,设外接球半径为R.在中,OA=R,,所以,所以,所以,即,解得,所以所求外接球的表面积为.故选:C.12.定义在上的奇函数,满足,当时,,,则函数在的零点个数为()A.7 B.6 C.5 D.4【答案】D【解析】【分析】根据已知条件求得时,的解析式,结合的奇偶性和对称性画出在区间的图象,由来确定的零点个数.【详解】是定义在上的奇函数,,当时,,,,所以当时,.奇函数,图象关于原点对称,由于,所以图象关于直线对称,由此画出在区间的图象如下图所示,由图可知有个解,也即有个解,即有个零点.故选:D第II卷非选择题二、填空题:本题共4小题,每小题5分,共20分13.已知是虚数单位,则复数的实部为______.【答案】0【解析】【分析】利用复数的除法计算即得解.【详解】解:,所以复数的实部为0.故答案为:014.若,满足,则的最小值是________.【答案】1【解析】【分析】作出不等式组表示的平面区域,再利用目标函数的几何意义计算作答.【详解】作出不等式组表示的平面区域,如图中阴影区域,其中点,,令,即表示斜率为,纵截距为的平行直线系,画直线:,平移直线到直线,当直线过点A时,直线的纵截距最小,最小,,所以的最小值是1.故答案为:115.已知函数,若,使成立,则实数的取值范围是___________.【答案】【解析】【分析】不等式存在性问题,转化成求最值,解不等式即可.【详解】因为在单调递减,所以当x=2时,f(x)取最小值2a+2若,使成立,只需f(x)min<0即可,即,得,满足.所以实数的取值范围.故答案为:.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则的值域是值域的子集.16.关于函数有如下四个结论:①对任意,都有极值;②曲线的切线斜率不可能小于;③对任意,曲线都有两条切线与直线平行;④存在,使得曲线只有一条切线与直线平行.其中所有正确结论的序号是______.【答案】②④【解析】【分析】举反例否定①;求得导函数的取值范围判断②;取特例否定③;取特例证明④.【详解】对①:当时,,为增函数,无极值.所以①错误;对②:,所以②正确.对③:当时,,设切点,由,可得或则切点为或则所求切线方程为或这两条切线中与平行,与重合.即当时,曲线只有一条切线与直线平行,且这条切线的切点的横坐标为,所以③错误;对④:由③可知,④正确.故答案为:②④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.如图,在△ABC中,∠ACB=,BC=2,P是△ABC内的一点,△BPC是以BC为斜边的等腰直角三角形,△APC的面积为.(1)求PA长;(2)求cos∠APB的值.【答案】(1);(2).【解析】【分析】(1)利用等腰直角三角形的性质,求得的值,利用面积公式求得的长,再由余弦定理求得的长;(2)在三角形中,用正弦定理求得的值,再利用诱导公式求得的值.【详解】(1)由题设∠PCA=,PC=,AC·PC·sin=,得AC=3.(或由题设AC·BC=,得AC=3.)在△PAC中,由余弦定理得PA==.(2)在△APC中,由正弦定理得,得sin∠APC=.于是cos∠APB=cos(-∠APC)=-sin∠APC=.【点睛】本小题主要考查解三角形,考查正弦定理和余弦定理的应用.题目的突破口在于三角形为等腰直角三角形,根据等腰直角三角形的性质可得出角度和边长,再结合正弦定理和余弦定理适用的条件,即可求得题目所求.属于中档题.18.已知函数,且.(1)当时,求曲线在点处的切线方程;(2)求函数的单调区间;(3)若函数有最值,写出的取值范围.(只需写出结论)【答案】(1)(2)答案见解析(3)【解析】【分析】(1)求出函数的导函数,即可求出切线的斜率,即可求出切线方程;(2)求出函数的导函数,分和两种情况讨论,讨论导函数的符号变换,进而得到函数的单调区间;(3)由(2)中的结论判断即可.【小问1详解】解:当时,由题设知.因为,所以.所以在处的切线方程为.【小问2详解】解:因为,所以.当时,定义域为.且故的单调递减区间为,,,当时,定义域为,当变化时,,的变化情况如下表:单调递减极小值单调递增极大值单调递减故的单调递减区间为,,单调递增区间为.综上所述,当时,的单调递减区间为,,,当时,故的单调递减区间为,,单调递增区间为.【小问3详解】解:由(2)可知要使函数有最值,则,使得函数在上单调递减,在上单调递增,在上单调递减,且当时,当时,所以在处取得极小值即最小值,在处取得极大值即最大值.19.如图,,,平面,,,.(1)证明:;(2)求二面角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由平面,证得平面平面,证得平面,得到,证得平面,得到,从而证得,进而证得平面,即可得到.(2)建立空间直角坐标系,利用向量法求出二面角即可.【小问1详解】取D为线段BC中点,连接AD与DB1,平面,平面,平面平面,平面平面.又是以BC为斜边的等腰直角三角形,,平面.平面,.,平面,平面,平面,,,与都为直角三角形,又,.,,,,.平面,平面,,平面,平面,.【小问2详解】,平面,,,又.以A为原点,AB,AC,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,如图,则,,,.轴平面,取平面一个法向量.设平面一个法向量为,,,由,,可得..二面角的正弦值为.20.已知函数()图象的相邻两条对称轴之间的距离为.(1)求的单调递增区间以及图象的对称中心坐标;(2)是否存在锐角,,使,同时成立?若存在,求出角,的值;若不存在,请说明理由.【答案】(1)递增区间为();对称中心坐标为()(2)存在;,【解析】【分析】(1)根据三角恒等变换化简解析式,再根据正弦型函数图象性质求解即可;(2)由诱导公式可得,又,代入化简可得,。【小问1详解】解:,由图象的相邻两条对称轴之间的距离为,得的最小正周期,解得.所以,由(),得(),所以的递增区间为(),由(),得();所以图象的对称中心的坐标为().【小问2详解】解:存在.因为,,所以,所以.又,,所以,即,即,即,即,所以,由为锐角,得,
精品解析:四川省双流棠湖中学2023-2024学年高三上学期10月月考理数试题(解析版)
你可能还喜欢
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
相关推荐
-
湘豫名校联考2023-2024学年高三上学期9月一轮复习诊断考试(一)历史试题
2023-11-15 22:20
6页 -
湘豫名校联考2024届高三上学期9月一轮复习诊断考试(一)化学参考答案
2023-11-15 22:20
5页 -
湘豫名校联考2024届高三上学期9月一轮复习诊断考试(一)历史参考答案
2023-11-15 22:20
4页 -
湘豫名校联考2024届高三上学期9月一轮复习诊断考试(一)高三数学参考答案
2023-11-15 22:20
7页 -
湘豫名校联考2023-2024学年高三上学期9月一轮复习诊断考试(一)语文试题
2023-11-15 22:20
15页 -
湘豫名校联考2023-2024学年高三上学期9月一轮复习诊断考试(一)政治试题
2023-11-15 22:20
16页 -
湘豫名校联考2023-2024学年高三上学期9月一轮复习诊断考试(一)地理试题
2023-11-15 22:20
12页 -
湘豫名校联考2023-2024学年高三上学期一轮诊断化学试题
2023-11-15 22:20
10页