六五文档>基础教育>试卷>数学01-2024届新高三开学摸底考试卷(新高考专用)(解析版)
数学01-2024届新高三开学摸底考试卷(新高考专用)(解析版)
格式:docx页数:21页大小:1.2 M上传日期:2023-11-23 23:05浏览次数:352 侵权/举报

2024届新高三开学摸底考试卷(新高考专用)01数学•全解全析一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,B=,则()A.{-2,-1,1} B.{-2,0,1} C.{-2,-1} D.{-1,1}【答案】A【详解】,则或,所以.故选:A.2.已知复数,为z的共轭复数,则()A. B.2 C. D.【答案】C【详解】由题:,,,所以.3.已知向量,且,则()A. B. C.2 D.-2【答案】D【详解】因为,,所以,又因为,所以,化简得.故选:D.4.已知函数f(x)=loga(6-ax)(a>0,且a≠1)在(0,2)上单调递减,则实数a的取值范围是( )A.(1,3] B.(1,3) C.(0,1) D.(1,+∞)【答案】 A【详解】 令t(x)=6-ax,因为a>0,所以t(x)=6-ax为减函数.又由函数f(x)=loga(6-ax)在(0,2)上单调递减,可得函数t(x)=6-ax>0在(0,2)上恒成立,且a>1,故有eq\b\lc\{\rc\(\a\vs4\al\co1(a>1,,6-2a≥0,))解得10,故由x∈(0,π),得ωx+eq\f(π,3)∈.根据函数f(x)在区间(0,π)上恰有三个极值点,知eq\f(5π,2)<πω+eq\f(π,3)≤eq\f(7π,2),得eq\f(13,6)<ω≤eq\f(19,6).根据函数f(x)在区间(0,π)上恰有两个零点,知2π<πω+eq\f(π,3)≤3π,得eq\f(5,3)<ω≤eq\f(8,3).综上,ω的取值范围为16.已知F为双曲线的右焦点,A、B是双曲线C的一条渐近线上关于原点对称的两点,且线段的中点在双曲线C上,则双曲线C的离心率.【答案】【详解】因为为双曲线的右焦点,所以.由题知双曲线的一条渐过线的方程为,不妨设,则,所以,则,由此得因此点的坐标为,线段的中点坐标为,因为它在双曲线上,所以,化简得,解得四、解答题:共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.记△ABC的内角A、B、C的对边分别为a、b、c,且.(1)求B的大小; (2)若,△ABC的面积为,求△ABC的周长.【详解】(1)由正弦定理得,所以,得,因为,所以,得,又,所以.(2)由,得,由余弦定理,得,得,得,所以的周长为.18.如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱(不与端点重合)上的点,,,.            (1)求证:平面平面;      (2)当的长为何值时,平面与平面所成的角的大小为?【解析】(1),为的中点,,      ,,       四边形为平行四边形,.      ,.      ,,.      又平面平面,平面平面,      平面,.又,平面.      平面,平面平面.      (2)由(1)可知平面.如图,以为原点,分别以,,所在直线为轴,轴,轴,建立空间直角坐标系,            则,,,,,      ,,,,      .      设,则,且,得,      .      设平面的法向量为,      则,即,      令,则,,      平面的一个法向量为.      设平面的法向量为,      则,即      令,则,,       平面的一个法向量为.      平面与平面所成的锐二面角的大小为,      ,      .      .      即当时,平面与平面所成的角大小为19.已知函数f(x)=ex-ax-a,a∈R.(1)讨论f(x)的单调性;(2)当a=1时,令g(x)=eq\f(2fx,x2).证明:当x>0时,g(x)>1.【详解】(1)解 函数f(x)=ex-ax-a的定义域为R,求导得f′(x)=ex-a,当a≤0时,f′(x)>0恒成立,即f(x)在(-∞,+∞)上单调递增,当a>0时,令f′(x)=ex-a>0,解得x>lna,令f′(x)<0,解得x0时,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增.(2)证明 当a=1时,g(x)=eq\f(2ex-x-1,x2),当x>0时,eq\f(2ex-x-1,x2)>1⇔ex>1+x+eq\f(x2,2)⇔eq\f(\f(1,2)x2+x+1,ex)<1,令F(x)=eq\f(\f(1,2)x2+x+1,ex)-1,x>0,F′(x)=eq\f(-\f(1,2)x2,ex)<0恒成立,则F(x)在(0,+∞)上单调递减,F(x)0时,g(x)>1,

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服