六五文档>基础教育>试卷>精品解析:四川省双流棠湖中学2023-2024学年高三上学期10月月考数学(文)试题(原卷版)
精品解析:四川省双流棠湖中学2023-2024学年高三上学期10月月考数学(文)试题(原卷版)
格式:pdf页数:5页大小:479.1 K上传日期:2023-11-26 11:01浏览次数:53 侵权/举报

棠湖中学高2021级高三10月考试数学(文史类)本试卷共4页,23小题,满分150分.考试用时120分钟.第I卷选择题(60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.Axxx10,Byyx21.若集合,则A.ABB.ABC.ABRD.BA2.下列函数中,在区间(0,)上单调递增的是()11A.y1x2B.yC.y()xD.ylgxx123.下面四个条件中,使a3b3成立的充要的条件是()A.ab1B.ab22C.abD.ab4.古代人家修建大门时,贴近门墙放置两个石墩.石墩其实算是门墩,又称门枕石,在最初的时候起支撑固定院门的作用,为的是让门栓基础稳固,防止大门前后晃动.不过后来不断演变,一是起到装饰作用,二是寓意“方方圆圆”.如图所示,画出的是某门墩的三视图,则该门墩从上到下分别是()1A.半圆柱和四棱台B.球的和四棱台41C.半圆柱和四棱柱D.球的和四棱柱4π1π5.已知0,,且sin,则sin2的值为()232第1页/共5页学科网(北京)股份有限公司774242A.B.C.D.99996.弹簧上挂的小球做上下振动时,小球离开平衡位置的距离ycm随时间xs的变化曲线是一个三角函数的图像(如图所示),则这条曲线对应的函数解析式是()A.y4sin2x3B.y4sinx6C.y4sin2x3D.y4sin2x67.方程x23ax3a1(0a>2)的两根为tan,tan,且,(,),则22353A.B.C.D.或4444418.将函数f(x)2sinx的图象向右平移个单位长度,再将所得图象上所有点的横坐标变为原来的(60)倍(纵坐标不变),得到函数g(x)的图象,若函数g(x)在区间(,)上是增函数,则的取值范围63是()1A.(0,]B.(0,2]C.(2,3)D.[3,)29.已知ab1,则以下四个数中最大的是()A.logbaB.log2b2aC.log3b3aD.log4b4a10.已知f(x)是定义在R上的奇函数,当x0时,f(x)x22x,若f(2a2)f(a),则实数a的取第2页/共5页学科网(北京)股份有限公司值范围是A.(2,1)B.(1,2)C.(,1)(2,)D.(,2)(1,)e211.设a2e,b33e,c,则()4ln4A.abcB.cabC.acbD.cba12.在正三棱锥P-ABC中,D,E分别为侧棱PB,PC的中点,若ADBE,且AD7,则三棱锥P-ABC外接球的表面积为()3572108152A.B.C.D.4579第II卷非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分1i13.已知i是虚数单位,则复数的实部为______.1ixy1014.若x,y满足xy0,则2yx的最小值是________.x1015.已知函数f(x)ax2(a0),若x0[2,2],使f(x0)0成立,则实数a的取值范围是___________.16.关于函数f(x)x3ax2有如下四个结论:①对任意aR,f(x)都有极值;a2②曲线yf(x)的切线斜率不可能小于;3③对任意aR,曲线yf(x)都有两条切线与直线yx1平行;④存在aR,使得曲线yf(x)只有一条切线与直线yx1平行.其中所有正确结论的序号是______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.第3页/共5页学科网(北京)股份有限公司π17.如图,在△ABC中,∠ACB=,BC=2,P是△ABC内的一点,△BPC是以BC为斜边的等腰直角三角23形,△APC的面积为.2(1)求PA长;(2)求cos∠APB的值.m2x18.已知函数f(x),且m0.x2m(1)当m1时,求曲线yf(x)在点0,0处的切线方程;(2)求函数f(x)的单调区间;(3)若函数f(x)有最值,写出m的取值范围.(只需写出结论)19.如图,在四棱锥PABCD中,底面ABCD是菱形,DAB60,PAPD,G为AD的中点.(1)求证:ADPB;(2)若E为BC边的中点,能否在棱PC上找到一点F,使DFAD?请证明你的结论.120.已知函数fxsinxsinxcosx(0)图象的相邻两条对称轴之间的距离为2.2(1)求fx的单调递增区间以及fx图象的对称中心坐标;2ππ3π3(2)是否存在锐角,,使2,ff2同时成立?若存在,求出3228角,的值;若不存在,请说明理由.第4页/共5页学科网(北京)股份有限公司21.已知函数fxx2a2lnxaxaR.(1)若fx0恒成立,求a的取值范围;1(2)记gxfxax,若gx在区间,e上有两个零点,求a的取值范围.e(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)x2cos22.在平面直角坐标系中,曲线C的参数方程为(为参数).以原点О为极点,x轴的非负ysin2半轴为极轴建立极坐标系,直线l的极坐标为cos42(1)求曲线C的普通方程与直线l的直角坐标方程;(2)设直线l与曲线C交于A,B两点,点Р的坐标为(2,0),证明:直线PA,PB关于x轴对称.[选修4-5:不等式选讲](10分)23.已知函数f(x)x2x1(1)求不等式f(x)x8的解集;331(2)记函数yf(x)的最小值为k,若a,b,c是正实数,且1,求证a2b3c9.ka2kbkc第5页/共5页学科网(北京)股份有限公司

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转WORD
付费下载 VIP免费下载

帮助
中心

联系
客服