六五文档>基础教育>试卷>2023年黑龙江省齐齐哈尔市中考数学真题(原卷版)
2023年黑龙江省齐齐哈尔市中考数学真题(原卷版)
格式:docx页数:8页大小:781.8 K上传日期:2023-12-06 10:16浏览次数:75 侵权/举报

二〇二三年齐齐哈尔市初中学业考试数学试卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分3.使用答题卡的考生,请将答案填写在答题卡的指定位置一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.﹣9的相反数是【】A.9 B.﹣9 C. D.﹣2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列计算正确的是()A. B. C. D.4.如图,直线,分别与直线l交于点A,B,把一块含角的三角尺按如图所示的位置摆放,若,则的度数是()A. B. C. D.5.如图,若几何体是由六个棱长为1的正方体组合而成的,则该几何体左视图的面积是()A.2 B.3 C.4 D.56.如果关于的分式方程的解是负数,那么实数的取值范围是()A. B.且 C. D.且7.某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A. B. C. D.8.如图,在正方形中,,动点M,N分别从点A,B同时出发,沿射线,射线的方向匀速运动,且速度的大小相等,连接,,.设点M运动的路程为,的面积为,下列图像中能反映与之间函数关系的是()A. B. C. D.9.为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为的导线,将其全部截成和两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有()A.5种 B.6种 C.7种 D.8种10.如图,二次函数图像的一部分与x轴的一个交点坐标为,对称轴为直线,结合图像给出下列结论:①;②;③;④关于x的一元二次方程有两个不相等的实数根;⑤若点,均在该二次函数图像上,则.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(每小题3分,满分21分)11.经文化和旅游部数据中心测算,今年春节假期全国国内旅游出游308000000人次,同比增长,数据308000000用科学记数法表示_________.12.如图,在四边形中,,于点.请添加一个条件:______,使四边形成为菱形.13.在函数中,自变量x取值范围是______.14.若圆锥的底面半径长2cm,母线长3cm,则该圆锥的侧面积为______(结果保留).15.如图,点A在反比例函数图像的一支上,点B在反比例函数图像的一支上,点C,D在x轴上,若四边形是面积为9的正方形,则实数k的值为______.16.矩形纸片中,,,点在边所在的直线上,且,将矩形纸片折叠,使点与点重合,折痕与,分别交于点,,则线段的长度为______.17.如图,在平面直角坐标系中,点A在轴上,点B在轴上,,连接,过点O作于点,过点作轴于点;过点作于点,过点作轴于点;过点作于点,过点作轴于点;…;按照如此规律操作下去,则点的坐标为______.三、解答题(本题共7道大题,共69分)18.(1)计算:;(2)分解因式:.19.解方程:.20.为了解学生完成书面作业所用时间的情况,进一步优化作业管理,某中学从全校学生中随机抽取部分学生,对他们一周平均每天完成书面作业的时间t(单位:分钟)进行调查.将调查数据进行整理后分为五组:A组“”;B组“”;C组“”;D组“”;E组“”.现将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是______,请补全条形统计图;(2)在扇形统计图中,A组对应的圆心角的度数是______,本次调查数据的中位数落在______组内;(3)若该中学有2000名学生,请你估计该中学一周平均每天完成书面作业不超过90分钟的学生有多少人?21.如图,在中,,平分交于点D,点E是斜边上一点,以为直径经过点D,交于点F,连接.(1)求证:是切线;(2)若,,求图中阴影部分的面积(结果保留π).22.一辆巡逻车从A地出发沿一条笔直公路匀速驶向B地,小时后,一辆货车从A地出发,沿同一路线每小时行驶80千米匀速驶向B地,货车到达B地填装货物耗时15分钟,然后立即按原路匀速返回A地.巡逻车、货车离A地的距离y(千米)与货车出发时间x(小时)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是______千米,______;(2)求线段所在直线的函数解析式;(3)货车出发多少小时两车相距15千米?(直接写出答案即可)23.综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系:______,______;(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.则,,之间的数量关系:______;(4)实践应用:正方形中,,若平面内存在点满足,,则______.24.综合与探究如图,抛物线上的点A,C坐标分别为,,抛物线与x轴负半轴交于点B,点M为y轴负半轴上一点,且,连接,.(1)求点M的坐标及抛物线的解析式;(2)点P是抛物线位于第一象限图象上的动点,连接,,当时,求点P的坐标;(3)点D是线段(包含点B,C)上的动点,过点D作x轴的垂线,交抛物线于点Q,交直线于点N,若以点Q,N,C为顶点的三角形与相似,请直接写出点Q的坐标;(4)将抛物线沿x轴的负方向平移得到新抛物线,点A的对应点为点,点C的对应点为点,在抛物线平移过程中,当的值最小时,新抛物线的顶点坐标为______,的最小值为______.

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服