六五文档>基础教育>试卷>11.3.2 多边形的内角和-八年级数学人教版(上)(解析版)
11.3.2 多边形的内角和-八年级数学人教版(上)(解析版)
格式:doc页数:2页大小:100.5 K上传日期:2023-12-20 19:51浏览次数:234 侵权/举报

第十一章三角形11.3.2多边形的内角和一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一个多边形的内角和等于1080°,则这个多边形的边数为A.6 B.7 C.8 D.9【答案】C【解析】设多边形边数有x条,由题意得:180(x−2)=1080,解得x=8,故选C.2.已知一个多边形的外角和是内角和的2倍,则这个多边形是A.三角形 B.四边形 C.五边形 D.六边形【答案】A3.如果一个正多边形的一个内角和它相邻外角的比是3∶1,那么这个多边形是A.正六边形 B.正八边形 C.正十边形 D.正十二边形【答案】B【解析】设这个多边形的边数是n,则∶=3∶1,解得n=8.故选B.4.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是A.a>b B.a=b C.a解析】∵四边形的内角和等于a,∴a=(4-2)·180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.二、填空题:请将答案填在题中横线上.5.若正多边形的一个外角为40°,则这个正多边形是__________边形.【答案】九【解析】根据正多边形的外角和为360°,正多边形的每个外角都相等,可得360÷40=9,因此这个正多边形是正九边形.故答案为:九.6.若一个多边形的边数增加1,则它的内角和增加__________.【答案】180°【解析】设多边形边数为n,那么增加1条即为n+1,原来内角和:(n-2)×180°=n×180°-360°,现在内角和:(n+1-2)×180°=n×180°-180°,内角和增加了180°,故答案为:180°.三、解答题:解答应写出文字说明、证明过程或演算步骤.7.某多边形的内角和与外角和的总和为2160°,求此多边形的边数.【解析】设这个多边形的边数为n,根据题意得(n-2)·180+360=2160,解得x=12,所以此多边形的边数是12.8.某同学采用把多边形内角逐个相加的方法计算多边形的内角和,求得一个多边形的内角和为1520°,当他发现错了以后,重新检查,发现少加了一个内角.问:这个内角是多少度?他求的这个多边形的边数是多少?

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服