六五文档>基础教育>试卷>人教版数学初二上册【能力培优】11.2与三角形有关的角(含答案)
人教版数学初二上册【能力培优】11.2与三角形有关的角(含答案)
格式:doc页数:5页大小:397.5 K上传日期:2023-12-20 20:02浏览次数:121 侵权/举报

11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=( )A.15°B.20°C.25°D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.若AP平分∠BAC且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题: (1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程) (3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可) [来源专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为( ) A.15° B.20° C.25° D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°. (1)求∠DCE的度数; (2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图: (1)求证:∠BDC=∠A+∠B+∠C; (2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角. 参考答案:1.C解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=∠ACE,∠2=∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC,∠BAP=∠BAC,∠ABP=∠ABC,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°.[来源:www.shulihua.net数理化网](法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以(∠BAC+∠ABC)=45°,[来源:学§科§网]因为BD平分∠ABC,AP平分∠BAC,∠DBC=∠ABC,∠PAC=∠BAC,所以∠DBC+∠PAD=45°.[来源:www.shulihua.net]所以∠APB=∠PDA+∠PAD=∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C; (2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B, ∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P, 又∵AP、CP分别平分∠DAB和∠BCD, ∴∠1=∠2,∠3=∠4, ∴∠P-∠D=∠B-∠P, 即2∠P=∠B+∠D, ∴∠P=(40°+30°)÷2=35°. (3)2∠P=∠B+∠D.4.B解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°, ∴∠ACB=68°. ∵CD平分∠ACB, ∴∠DCB=∠ACB=34°. ∵CE是AB边上的高, ∴∠ECB=90°-∠B=90°-72°=18°. ∴∠DCE=34°-18°=16°. (2)∠DCE=(∠B-∠A).6.(1)证明:延长BD交AC于点E, ∵∠BEC是△ABE的外角, ∴∠BEC=∠A+∠B. ∵∠BDC是△CED的外角, ∴∠BDC=∠C+∠DEC=∠C+∠A+∠B. (2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°. 证明:∠BDC+∠ACD+∠A+∠ABD=∠3+∠2+∠6+∠5+∠4+∠1 =(∠3+∠2+∠1)+(∠6+∠5+∠4) =180°+180°=360°.

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服