六五文档>基础教育>试卷>江西南昌二中2024届高三“九省联考”考后适应性测试数学试题(一)(原卷版)
江西南昌二中2024届高三“九省联考”考后适应性测试数学试题(一)(原卷版)
格式:docx页数:4页大小:424.5 K上传日期:2024-02-19 11:42浏览次数:146 侵权/举报

南昌二中2024高三九省联考考后适应性测试数学试题一本套试卷根据九省联考题型命制,题型为8+3+3+5模式一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数据6.0,7.4,8.0,8.4,8.6,8.7,9.0,9.1的50百分位数为()A.8.4 B.8.5 C.8.6 D.8.72.已知双曲线的离心率,则的取值范围是()A. B. C. D.3若数列满足,,则()A. B.11 C. D.4.已知平面,直线,直线不在平面上,下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则5.在某次美术专业测试中,若甲、乙、丙三人获得优秀等级的概率分别是和,且三人的测试结果相互独立,则测试结束后,在甲、乙、丙三人中恰有两人没达优秀等级的前提条件下,乙没有达优秀等级的概率为()A. B. C. D.6.在平面直角坐标系中,集合,集合,已知点,点,记表示线段长度的最小值,则的最大值为()A.2 B. C.1 D.7.已知函数,,则存在,使得()A. B.C. D.8.已知平面上两定点、,则所有满足(且)的点的轨迹是一个圆心在上,半径为的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称作阿氏圆.已知棱长为3的正方体表面上动点满足,则点的轨迹长度为()A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数,,则下列结论正确是()A.方程表示的在复平面内对应点的轨迹是圆B.方程表示的在复平面内对应点的轨迹是椭圆C.方程表示的在复平面内对应点的轨迹是双曲线的一支D.方程表示的在复平面内对应点的轨迹是抛物线10.已知为锐角,则下列说法错误的是()A.满足的值有且仅有一个B.满足,,成等比数列的值有且仅有一个C.,,三者可以以任意顺序构成等差数列D.存在使得,,成等比数列11.已知无穷数列,.性质,,;性质,,,下列说法中正确的有()A.若,则具有性质sB若,则具有性质tC.若具有性质s,则D.若等比数列既满足性质s又满足性质t,则其公比的取值范围为三、填空题:本题共3小题,每小题5分,共15分.12.已知,(a为实数).若q一个充分不必要条件是p,则实数a的取值范围是________.13.各棱长均为1且底面为正方形的平行六面体,满足,则______;此平行六面体的体积为______.14.已知定义在R上增函数满足对任意的,都有,且,函数满足,,且当时.若在上取得最大值的x值依次为,,…,,取得最小值的x值依次为,,…,,则______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数,.(1)讨论函数的单调性;(2)若恒成立,求的取值范围.16.有两个盒子,其中1号盒子中有3个红球,2个白球;2号盒子中有6个红球,4个白球.现按照如下规则摸球.从两个盒子中任意选择一个盒子,再从盒中随机摸出2个球,摸球的结果是一红一白.(1)你认为较大可能选择的是哪个盒子?请做出你的判断,并说明理由;(2)如果你根据(1)中的判断,面对相同的情境,作出了5次同样的判断,记判断正确的次数为X,求X的数学期望(实际选择的盒子与你认为较大可能选择的盒子相同时,即为判断正确).17.如图1,已知正三角形边长为4,其中,现沿着翻折,将点翻折到点处,使得平面平面为中点,如图2.(1)求异面直线与所成角的余弦值;(2)求平面与平面夹角的余弦值.18.在平面直角坐标系中,已知抛物线和点.点在上,且.(1)求的方程;(2)若过点作两条直线与,与相交于,两点,与相交于,两点,线段和中点的连线的斜率为,直线,,,的斜率分别为,,,,证明:,且为定值.19.若存在使得对任意恒成立,则称为函数在上的最大值点,记函数在上的所有最大值点所构成的集合为(1)若,求集合;(2)若,求集合;(3)设为大于1的常数,若,证明,若集合中有且仅有两个元素,则所有满足条件的从小到大排列构成一个等差数列.

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服