吴忠市2024届高考模拟联考试卷(一)文数参考答案一、选择题(每小题5分,共60分)题号123456789101112答案CCACDABABCDD二、填空题(每小题5分,共20分)13.;14.2;15.2024;16.6�3−14−213.【解析】解:因为,, 所以� =4,,0�=�,,1 因为|� |=4� , ⋅�=4�所以|� |=� ⋅� , 即得,所以4=4��=1, 2设向量|�|=,的�夹+角1为=,2 � � �所以,� ·� 12????��=� ·� =� =2因为,所以�∈[0.,�]��=4故答案为:.�414.【解析】解:画出不等式组表示的平面区域,如图所示,将化为,则由z图=可3x得+当y直线y=−3x+z经过点时,取得最小值,y=−3x+zAz所以联立,得,2x−y+3=0A(−1,1)所以x+3y−2=0.故答z案min为=:−3+.1=−2−2文数答案·第1页·共8页{#{QQABBYSAogiAAJIAAAgCEQUQCkEQkACCACoOwFAMoAAACANABAA=}#}15.【解析】解:根据题意,可得,,02,a1+a2=4×3,=4a3+a4=4×32022所...以a2023+a2024=4×3022022S2024=4×3+4×3+…4×3210120220221−(3)=4×3+3+…3=4×21−32024.3−1=2故答案为20243−116.【解析】2解:取的中点,连接,,因为????是�边长为��的正�三�角形,,所以△�????,2,��=????因为��⊥????��,⊥????,平面,所以��∩平�面�=�,����⊂���因为????⊥平面���,所以��⊂�,��因为�,�⊥分�别�是,的中点,所以是的中位线,故EF��,������△���因为//��,所以,因为��,⊥��平面��⊥,��,所以���平�面⊂,�????��⋂????=�因为��,⊥�平????面,所以��????⊂,�????,因为��⊥����,⊥????,由勾股��定理=得????=2��=��=????,因为,�所�以=��=????=2,222由勾股????定理=逆2定理可�得�+????=,????所以,,两�两�垂⊥直�,�故棱锥�����外�接球即为以,,为长,宽,高的长方体的外�−�????����????文数答案·第2页·共8页{#{QQABBYSAogiAAJIAAAgCEQUQCkEQkACCACoOwFAMoAAACANABAA=}#}接球,设外接球半径为,�则,解得,2226则三2�棱锥=��+�外�接球+的�表�面=积为6�=.22故答案为:�−�.????4��=6�三、解答题(共70分)6�17.(本小题12分)【答案】解:选择条件①:222b+2ac=a+c(1)因为,222b+2ac=a+c由余弦定理222知………………………………1分a+c−bcos B=2ac,……………………………………3分2ac2因co为s B=2ac=,2所以B∈(0.,…π)…………………………………………………6分πB=4(2)由正弦定理得…………………………………………7分absinA=sinB,…………………………………………9分bsinAa=sinB=3又因为sin C=sin (A+B)=sin Acos B+cos Asin B,…………………………………………10分6+2=4所以.………………………………12分13+3△ABC选择条件②:S=2absi.n C=4acosB=bsinA(1)由正弦定理得,………………………………1分ab所以sinA=s;inB又asinB=bsin,A所以acosB=bsinA,所以sinB=co;sB………………………………………3分又tanB=1,所以B∈(0,;π)……………………………………………6分πB=4文数答案·第3页·共8页{#{QQABBYSAogiAAJIAAAgCEQUQCkEQkACCACoOwFAMoAAACANABAA=}#}(2)由正弦定理知,…………………………………7分absinA=sinB所以;……………………………………………9分bsinA所以a=sinB=3sinC=sin(A+B)=sinAcosB+cosAsinB,…………………………………………10分32126+2=2×2+2×2=4所以的面积为1△ABCS△ABC=2absinC………………………………………12分16+23+3=2×3×2×4=418.(本小题12分)【答案】解:(1)由散点图中数据和参考数据得,,,……2分−4.5+5+6+7+7.5−x=5=6y=135−− 5,… i=1(xi−x)(yi−y)−1.5×36+(−1)×30+0×(−5)+1×(−26)+1.5×(−35)5−222222b= i=1(xi−x)=(−1.5)+(−1)+0+1+1.5=−25……………4分.分 − −………………6a=y−bx=135−(−25)×6=285关于的线性回归方程为; ∴yxy=−25x+285()将代入,得.分2 ………………7该跑y=者1跑6完0马拉松y=全−程2所5花x+时2间8为5x=5分钟.………………8分∴从马拉松比赛的频率分布直方图可知4成2×绩5好=于210分钟的累计频率为:210,0有.0008×的50跑+者0成.0绩0超24过×该(2跑1者0−.…20…0)…=100分.064则该6.跑4%者在本次比赛获得名次大约是名.…………………………12分0.064×3000=19219.(本小题12分)【答案】解:(1)点是的中点,理由如下:……………………1分证明E:连P接C,交于点,连结,…………2分底面AC是正方B形D,、O相交O于E点,∵ABCD文数答A案C·B第D4页·共8O页{#{QQABBYSAogiAAJIAAAgCEQUQCkEQkACCACoOwFAMoAAACANABAA=}#}是的中点,…………………………………………………………3分∴O平AC面,含于平面,平面平面,∵PA//,E…B…D…P…A……………P…A…C…………PA…C…∩………B5D分E=OE∴PA//OE中,是的中点,∵△A是PC的中O点.A…C……………………………6分(2)∴E为PC中点,∵EPC11∴VE−BPD=2VC−BPD=2VP−DBC⋅若,则…………………………9分(只要用等体积法48∴VE−BPD=3VP−DBC=3换底即给3分)底面,,∵PD⊥ABCDPD=λCD=2λ………………………………10分1S△BCD=2×2×2=2,解得.…………12分118∴VP−DBC=3⋅S△BCD⋅2λ=3×2×2λ=3λ=2存在,使三棱锥体积为.4∴λ=2E−BPD320.(本小题12分)【答案】解:(1)由题意得定义域为,af(x)=lnx−a+x(a>0)(0,+∞),………………………………2分1ax−a22f′(x)=x−x=x因为在点处与轴相切,且,………………3分y=f(x)(1,f(1))xf(1)=0所以,解得经检验符合题意.……4分f′(1)=1−a=0a=1.a=1(2)由知,令,得,x−a2(1)f′(x)=xf′(x)=0x=a当时,,当时,,当x
宁夏吴忠市2024届高三下学期高考模拟联考(一)文科数学试卷答案
你可能还喜欢
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
相关推荐
-
宁夏吴忠市2024届高三下学期高考模拟联考(一)物理试题答案
2024-03-26 17:10
3页 -
宁夏吴忠市2024届高三下学期高考模拟联考(一)英语试题答案
2024-03-26 17:10
5页 -
宁夏吴忠市2024届高三下学期高考模拟联考(一)语文试题答案
2024-03-26 17:10
10页 -
宁夏吴忠市2024届高三下学期高考模拟联考(一)政治试题答案
2024-03-26 17:10
2页 -
宁夏吴忠市2024届高三下学期高考模拟联考(一)文综试卷
2024-03-26 17:10
12页 -
宁夏吴忠市2024届高三下学期高考模拟联考(一)英语试卷
2024-03-26 17:10
8页 -
宁夏吴忠市2024届高三下学期高考模拟联考(一)理综试卷
2024-03-26 17:10
12页 -
宁夏吴忠市2024届高三下学期高考模拟联考(一)语文试卷
2024-03-26 17:10
8页