六五文档>基础教育>试卷>2024届山东省实验中学高三下学期5月高考模拟 数学答案
2024届山东省实验中学高三下学期5月高考模拟 数学答案
格式:pdf页数:7页大小:595.5 K上传日期:2024-06-01 23:02浏览次数:466 侵权/举报

2024年普通高等学校招生全国统一考试(模拟数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。题号12345678答案ADCDCCBB二、多项选择题:本题共3小题,每小题6分,共18分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。题号91011答案CDBCDBCD三、填空题:本题共3小题,每小题5分,共15分。12.0;13.32,,答案不唯一;14.4.四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。15.【解析】(1)此次测试的平均成绩为:0.2650.3750.4850.19579;···································5分(2)由题意可知,录取率为0.3,能进入第一梯队的概率为0.1;···········7分设录取分数为x,因为分数落在[90,100]的概率为0.1,分数落在[809,0)的概率为0.4,所以x[8090),,令0.1(90)0.040.3x,解得x85,··········10分所以录取分数大概为85分,进入第一梯队的分数大概为90分,所以学生甲能被录取,但不能进入第一梯队.·····························13分16.【解析】若选择①caC2cos()(1)因为,bBcos由正弦定理得sinBCBCABcoscossin2sincos0,··················2分所以sin()2sincos0BCAB,即sinAB(2cos1)0,-1-1从而cosB,································································5分22因为B0,,所以B.··············································7分3ADc(2)在△ABD中,,sinsinBADBcBsin2所以sinADB,···············································10分AD2所以ADB,所以BADDAC,412所以ACBBAC,·····················································13分6所以△ABC是等腰三角形,且ac,所以ba2cos23.·······················································15分6若选择②sinsinACbc(1)因为,sinsinBCa由正弦定理得bacac222,···············································2分又由余弦定理bacacB2222cos,1从而cosB,··································································5分2B0,,所以.······················································7分(2)同①中第二问.若选择③B(1)因为2abAsin32sin,所以aBbA1cos3sin,2由正弦定理得sinABBA1cos3sinsin,·····························2分1整理得3sinBBcos1,所以sinB···························5分627因为,所以B,,666-2-52所以B,所以B.·················································7分663(2)同①中第二问.17.【解析】(1)取线段的中点为,连接,,AB1HEHFH1因为F为线段AC的中点,所以FHBC,且FHBC;·············2分121又E是AD的中点,所以ED,且EDBC;2所以EDFH,且EDFH,故四边形EDFH为平行四边形;所以DFEH,·······································································5分因为DF平面A1BE,EH平面,所以直线平面;························································7分DFA1BEzA1HAEFB(2)因为是的中点,DExy所以,所以;BEADBEAE1C因为平面平面,AB1EBCDE平面平面,A1BEBCDEBE所以平面.···························································8分AE1以为原点,分别为x轴,y轴,轴建立空间直角坐标系,EEB,ED,EA1z设,则,,,,,,AB2E(000)A1(0,0,1)B(300),,C(320),,则,,,··················9分EA1(0,0,1)BA1(3,0,1)BC(020),,-3-nBA030xz设平面的法向量为,,,则1,即,A1BCn()xyznBC020y取x1,则n(1,03),,·····················································11分设直线与平面所成角为,AE1A1BCnEA3则1,分sin|cos|n,EA1··································13||||nEA12所以直线AE与平面所成角为.·······································15分1318.【解析】(1)由题意可知,42p,所以p2,·········································2分所以抛物线E的方程为yx24.···············································4分2(2)(i)设Ax1,y1,Bx2,y2,将直线AB的方程代入yx4得:42kmm2kxkmxm222(24)0,所以xxxx,,········6分1212kk22因为直线PA与PB倾斜角互补,yykxmkxm21212222所以kkPAPB0,xxxx2121111111xx2即2(2)()kkmkkm2(2)012,xxxx212111(1)(1)422kmk2所以2(2)0kkm,(2)(2)kmkm422kmk2即20k,所以k1;·····································10分km2222(ii)由(i)可知x(2m4)xm0,所以xxmx1212xm42,,2则ABxxxxm1144212112,因为(2mm4)2240,所以m1,即13m,|3|m又点P到直线AB的距离为,21|3m|所以S421m2(3m)2(m1),························13分221因为(3m)2(m1)(3m)(3m)(2m2),2-4-1332232mmm()3,2327861所以S,当且仅当322mm,即m时,等号成立,9386所以△PAB面积最大值为.···············································17分9119.(1)解:因为XB(2,),2所以X的分布列为:X01211P42(3分)1111113所以HX()(logloglog).(4分)4422442222(2)(i)解:记发出信号0和1分别为事件Ai,收到信号0和1分别为事件Bi,i=0,1,则PApPAp(),()1011,(5分)P(|)(|),BAP00111001BAq(|)(|)1PBAPBAq,(6分)所以P()()(|)()(|)BP0000101APBAPAPBApqpqpqpq(1)(1)12.(7分)P()A0(|)PBA00pq所以P(|).AB00(9分)P()12Bpqpq0(ii)证明:由(i)知,PBpqpq()120,所以P()1()2BP10Bpqpq,(10分)pp1所以KL(X||Y)pplog(1)log,(11分)22122pqpqpqpq11x设f(x)1lnx,则fx(),xx2当x∈(0,1)时,fx()0,fx()单调递增;当x(1,)时,fx()0,单调递减.-5-1所以fx(f)(1)0,即ln1x,xln11x所以log(1)x.(13分)2ln2ln2x11212pqpqpqpq所以KL(||)(1)(1)(1)0XYpp,(15ln2ln21pp分)pp11当且仅当1,即pq,01时等号成立.122pqpqpqpq2即KL(X||Y)≥0得证.(17分)【评分细则】1.第一问没有交待X的分布列,直接得到H(X)的值,得1分;若交待111PXPXPX(0),(1),(2)没有列表,不扣分;4242.第二问(i)直接得到PBpqpq()120没有交待过程,扣1分,第二问(ii)没有交待等号成立条件,扣1分。-6--7-

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转WORD
付费下载 VIP免费下载

帮助
中心

联系
客服