陕西省西安中学高2025届高三第一次质量检测考试数学试题(时间:120分钟满分:150分命题人:赵昕媛)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.【答案】C【解析】【分析】先根据对数函数的单调性解不等式化简集合B,然后利用交集运算求解即可.【详解】因为,所以,解得或,故或,又,所以.故选:C2.“”是“函数在上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【解析】【分析】根据对数函数和一次函数的单调性,再结合复合函数“同增异减”的判断法则求得对应的的取值范围即可得出结论.【详解】易知的定义域为,且函数为单调递减函数;根据复合函数单调性可知若函数在上单调递增,可得,解得;显然是的真子集,所以“”是“函数在上单调递增”的必要不充分条件.故选:B3.函数在区间的图象大致为()A. B.C. D.【答案】B【解析】【分析】利用函数的奇偶性可排除A、C,代入可得,可排除D.【详解】,又函数定义域为,故该函数为偶函数,可排除A、C,又,故可排除D.故选:B.4.已知,则()A. B. C. D.【答案】B【解析】【分析】判断出,,,即可求解.【详解】,故;,故,故.故选:B.5.已知定义在上的函数满足,且,则()A. B.1 C. D.3【答案】C【解析】【分析】由条件推得函数的周期为4,结合函数的周期,即可求解.【详解】由,可得,所以的周期为4,则.故选:C.6.已知函数,若关于的方程有2个不相等的实数解,则实数的取值范围是()A. B. C. D.【答案】C【解析】【分析】根据题意,转化为与的图象有2个交点,分、和,三种情况讨论,结合导数的几何意义与函数的图象,即可求解.【详解】由题意,关于的方程有2个不相等的实数解,即与的图象有2个交点,如图所示,当,直线与图象交于点,又当时,,故直线与()的图象无公共点,故当时,与的图象只有一个交点,不合题意;当,直线与曲线()相切时,此时与的图象有2个交点,设切点,则,又由过点,所以,解得,所以;当时,若,则,由,可得,所以当时,直线与的图象相切,由图得当时,直线与的图象有2个交点.综上所述,实数的取值范围是.故选:C.7已知函数,则( )A.有三个极值点 B.有三个零点C.点是曲线的对称中心 D.直线是曲线的切线【答案】C【解析】【分析】求导后判断单调性,从而求得极值点即可判断A;利用单调性结合零点存在性定理即可判断B;令,得到是奇函数,是的对称中心,再结合图象的平移规律即可判断C;由导数的几何意义求得切线方程即可判断D.【详解】对于A,由题,,令得或,令得,所以在,上单调递增,上单调递减,所以是极值点,故A不正确;对应B,因,,,所以,函数在上有一个零点,当时,,即函数在上无零点,综上所述,函数有一个零点,故B错误;对于C,令,该函数的定义域为,,则是奇函数,是的对称中心,将的图象向上移动一个单位得到的图象,所以点是曲线的对称中心,故C正确;对于D,令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为,故D错误.故选:C8.已知函数,,若方程有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A. B.28 C. D.14【答案】A【解析】【分析】利用换元法结合一元二次方程根的分布,数形结合计算即可.【详解】先作出的大致图象,如下令,则,根据的图象可知:要满足题意必须有两个不等根,且有两个整数根,有三个整数根,结合对勾函数和对数函数图象与性质知,两函数相切时符合题意,因为,当且仅当时取得等号,又,易知其定义域内单调递减,即,此时有两个整数根或,而要满足有三个整数根,结合图象知必有一根小于2,显然只有符合题意,当时有,则,解方程得的另一个正根为,又,此时五个整数根依次是,显然最大根和最小的根和为.故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A. B. C. D.【答案】ACD【解析】【分析】利用求导公式逐项判断即可.【详解】对于A,,故A正确;对于B,,故B错误;对于C,,故C正确;对于D,,故D正确.故选:ACD10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种【答案】BCD【解析】【分析】根据排列和组合的定义、结合捆绑法逐一判断即可.【详解】A:甲乙不相邻的不同排法有种,所以本选项不正确;B:甲乙中间恰排一个人的不同排法有种,所以本选项正确;C:甲乙不排在两端的不同排法有种,所以本选项正确;D:甲乙丙三人从左到右由高到矮的不同排法有种,所以本选项正确.故选:BCD11.已知,则()A. B.C. D.【答案】ABD【解析】【分析】选项ABD,利用不等式的性质计算即可,选项C,因为可正可负,所以不容易化简解决,一般当乘或除以一个不知正负的数,基本上错误,我们只需要找反例即可.【详解】因为,所以,故A正确;因为,所以,故B正确;因为,不妨令,得,此时,故C错误;因为,所以,故D正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12.某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是,则可估计这次数学测试成绩的第40百分位数是_________.【答案】65【解析】【分析】利用百分位数的定义求解.【详解】解:成绩在的频率是,成绩在的频率为,所以第40百分位数一定在内,所以这次数学测试成绩的第40百分位数是,故答案为:6513.若曲线在点处的切线也是曲线的切线,则__________.【答案】【解析】【分析】先求出曲线在的切线方程,再设曲线的切点为,求出,利用公切线斜率相等求出,表示出切线方程,结合两切线方程相同即可求解.【详解】由得,,故曲线在处的切线方程为;由得,设切线与曲线相切的切点为,由两曲线有公切线得,解得,则切点为,切线方程为,根据两切线重合,所以,解得.故答案为:14.展开式中,的系数为__________.【答案】【解析】【分析】根据二项式的通项公式进行求解即可.【详解】二项式的通项公式为,所以的系数为,故答案为:四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数.(1)若,求函数的极值;(2)讨论函数的单调性.【答案】(1)极小值为,极大值为(2)答案见解析【解析】【分析】(1)对求导,分析单调性,再根据极值定义即可求解;(2),对分,和讨论单调性即可.【小问1详解】.所以x<1或x>2时,,时,,则在上递减,在递增,所以的极小值为,极大值为.【小问2详解】,当时,,所以在上递增,当时,或时,;时,,所以在上递增,在上递减,当时,或时,;时,,所以在上递增;在上递减.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线的附近,请根据下表中的数据求出月份x123456体重超标人数y987754483227(1)该年级体重超重人数y与月份x之间的经验回归方程系数的最终结果精确到;(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.附:经验回归方程:中,,;参考数据:,,,【答案】(1)(2)从第十个月开始【解析】【分析】(1)由计算公式与参考数据,求出则可得回归方程;(2)根据经验回归方程建立不等式,解出不等式则可预测.【小问1详解】由得,由题意得,,所以,,所以,即y关于x的经验回归方程为【小问2详解】令,所以,又由于,所以解得,且,所以从第十个月开始,该年级体重超标的人数降至10人以下.17.已知函数,,,且(1)当且时,求不等式的解集;(2)若函数在区间上有零点,求t的取值范围.【答案】(1)(2)或【解析】【分析】(1)当时,将不等式转化为,利用对数函数的单调性结合一元二次不等式求解即可;(2)解法一:分离参数,将原函数的零点问题转化为且有根,设且,则,利用对勾函数的单调性求解值域即可求解;解法二:先判断时,不合题意,当时,根据二次函数零点分布分类讨论,列不等式组求解即可.【小问1详解】当时,,又00,∴4x2−5x≤0x>12⇒12
陕西省西安中学2024-2025学年高三上学期10月月考数学试题答案
你可能还喜欢
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
相关推荐
-
陕西省西安中学2024-2025学年高三上学期10月月考政治试题
2024-10-10 22:10
16页 -
陕西省西安中学2024-2025学年高三上学期10月月考生物试题答案
2024-10-10 22:10
33页 -
陕西省西安中学2024-2025学年高三上学期10月月考生物试题
2024-10-10 22:10
16页 -
陕西省西安中学2024-2025学年高三上学期10月月考地理试题答案
2024-10-10 22:10
19页 -
陕西省西安中学2024-2025学年高三上学期10月月考化学试题
2024-10-10 22:10
8页 -
陕西省西安中学2024-2025学年高三上学期10月月考政治试题答案
2024-10-10 22:10
2页 -
2025届吉林省九师联盟高三上学期教学质量监测数学答案
2024-10-12 21:06
4页 -
安徽省江南十校2024-2025学年高三上学期第一次综合素质检测语文试题+答案
2024-10-12 21:06
12页