为您找到与高考数学专题16 圆锥曲线与重心问题-高考数学圆锥曲线重难点专题突破(全国通用)(解析版)相关的共 200 个结果:
专题01直线与椭圆的位置关系一、单选题1.已知曲线上任意一点满足,则曲线上到直线的距离最近的点的坐标是( )A. B. C. D.2.直线x-y+1=0被椭圆
专题06直线与双曲线的位置关系一、单选题1.直线与双曲线的交点情况是()A.恒有一个交点 B.存在m有两个交点C.至多有一个交点 D.存在m有三个交点2.若直线
专题12抛物线的焦点弦、中点弦、弦长问题一、单选题1.过点的直线与抛物线交于A,B两点,若线段AB中点的横坐标为2,则()A. B. C. D.2.已知直线过抛
专题08双曲线中的参数范围及最值问题一、单选题1.若点和点分别为双曲线的中心和左焦点,点为该双曲线上的任意一点,则的最小值为()A. B. C. D.2.过双曲
专题10双曲线中的向量问题一、单选题1.过双曲线的右焦点作倾斜角为的直线交双曲线右支于,两点,若,则双曲线的离心率为()A. B. C.2 D.2.已知双曲线的
专题13抛物线中的参数问题一、单选题1.设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是()A.(6,+∞) B.[6,+∞)C.(3,+
专题01直线与椭圆的位置关系一、单选题1.已知曲线上任意一点满足,则曲线上到直线的距离最近的点的坐标是( )A. B. C. D.【解析】设,则,点的轨迹是以
专题06直线与双曲线的位置关系一、单选题1.直线与双曲线的交点情况是()A.恒有一个交点 B.存在m有两个交点C.至多有一个交点 D.存在m有三个交点【解析】将
专题07双曲线的焦点弦、中点弦、弦长问题一、单选题1.设,为双曲线的两个焦点,点在双曲线上且满足,则的面积为()A.2 B. C.4 D.【解析】由题意,双曲线
专题11直线与抛物线的位置关系一、单选题1.直线与抛物线有且只有一个公共点,则,满足的条件是()A. B.,C., D.或【解析】当时,直线与抛物线有且只有一个
专题12抛物线的焦点弦、中点弦、弦长问题一、单选题1.过点的直线与抛物线交于A,B两点,若线段AB中点的横坐标为2,则()A. B. C. D.【解析】设直线方
专题09双曲线中的定点、定值、定直线问题一、单选题1.已知为坐标原点,点在双曲线(为正常数)上,过点作双曲线的某一条渐近线的垂线,垂足为,则的值为()A. B.
专题14抛物线中的定点、定值、定直线问题一、单选题1.已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A.
专题15圆锥曲线新定义问题一、单选题1.若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆中是“对
专题17圆锥曲线与内心问题一、单选题1.已知椭圆的左右焦点分别为,,为椭圆上不与左右顶点重合的任意一点,是的内心,当时(其中,分别为点与内心的纵坐标),椭圆的离
专题18圆锥曲线与外心问题一、单选题1.已知点,是椭圆的左、右焦点,点是这个椭圆上位于轴上方的点,点是的外心,若存在实数,使得,则当的面积为8时,的最小值为A.
专题19圆锥曲线与垂心问题一、单选题1.已知点,在抛物线上,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是()A. B. C. D.2.已知分别是
专题20圆锥曲线中的轨迹问题一、单选题1.已知点的坐标为,是圆上一动点,线段的垂直平分线交于,则动点的轨迹为()A.圆 B.椭圆 C.双曲线的一支 D.抛物线2
专题21圆锥曲线的综合应用一、单选题1.已知F是抛物线C:的焦点,O为坐标原点,过F的直线交C于A,B两点,则三角形OAB面积的最小值为()A. B. C. D