六五文档>基础教育>试卷>数学-2024届新高三开学摸底考试卷(九省新高考通用)01(答案及评分标准)
数学-2024届新高三开学摸底考试卷(九省新高考通用)01(答案及评分标准)
格式:docx页数:9页大小:591.7 K上传日期:2023-11-23 23:05浏览次数:344 侵权/举报

2024届新高三开学摸底考试卷(九省新高考专用)01数学·答案评分标准123456789101112BCCACCADADBCDACDBD13.-200 14.815.2 16.417.【答案】【详解】=.(10分)18.【答案】(1)(2)【分析】(1)利用向量垂直的坐标表示得,应用正余弦定理的边角关系化简,结合锐角三角形求角C;(2)法一:将用的三角函数表示出来,结合求周长范围;法二:首先得到,再用表示周长,利用函数的单调性求范围.【详解】(1),(法一),,,∴,则,又为锐角三角形,故.(法二)则,, ∴,且为锐角三角形,故.(6分)(2),,由于为锐角三角形,则,且,解得,(法一)周长,而,即,∴,故的周长l的取值范围为.(法二)由上,由余弦定理得,周长,记,则在单调递增,∴的周长l的取值范围为.(12分)19.【答案】(1)证明见解析(2)(3)【分析】(1)连接,先根据是等腰直角三角形证出中线,再结合证出,利用平面与平面垂直的判定定理,可证出平面平面;(2)依题意可得,则,再根据计算可得.(3)过分别作于,于,再连接,根据三垂线定理证明为二面角的平面角,最后分别在、、中计算出、和,最后求出所求二面角的余弦值. 【详解】(1)连接,,是的中点,,又底面,底面,,,平面,平面,而平面,平面平面.(5分)(2)因为是的中点,是的直径,所以,所以,所以.(7分)(3)在平面中,过作于,由(1)知,平面平面,平面平面,平面,所以平面,又平面,,在平面中,过作于,连接,,平面,所以平面,又平面,从而.故为二面角的平面角,在中,,在中,,在中,,在中,,所以, 故二面角的余弦值为.(12分)  20.【答案】(1)(2)①证明见解析;②最大值为,.【分析】(1)根据双曲线与椭圆的离心率,结合椭圆的定义求解即可;(2)①设,BA的方程为,再联立椭圆的方程,利用韦达定理表达化简即可;②同①,根据弦长公式结合点到线的距离公式,代入韦达定理化简可得的表达式,结合的范围求解面积范围即可.(1)由椭圆的定义知,双曲线的离心率为,故椭圆的离心率,故,,,故椭圆的方程为.(3分)(2)①证明:设,则.设直线BA的方程为,联立方程化简得,,∴,,∴; ②当直线AB的斜率不存在时,可知,,,故,当直线AB的斜率存在时,由①知,,,,,点C到直线AB的距离,故.故△ABC面积的最大值为,此时AB的方程为.(12分)21.【答案】(1)(2)【分析】(1)根据函数为奇函数得到,故,求出,分与两种情况,结合单调性,列出不等式,求出的取值范围;(2)根据,,求出或,分两种情况,利用导函数得到单调性和极值情况,得到时的值域.【详解】(1)是定义域为的奇函数,∴,即,故,,且.. 当时,,此时在上单调递减,在上只有1个零点,不合题意.当时,令,解得,令,解得或,在,上单调递减,在上单调递增.在上有3个零点,且,由函数为奇函数,故只需,即,.实数的取值范围是.(6分)(2),由已知可得,且,解得或,当,时,,.令,即,解得,易知是的极小值点,与题意不符;当,时,,.令,即,解得,易知是的极大值点,符合题意,故,.,在上单调递增,在上单调递减. 又,,.在上的值域为.(12分)22.【答案】(1)(2)【分析】(1)利用导数研究的单调性求最值;(2)令,问题化为恒成立,利用导数研究单调性,讨论参数a及定义域判断符号,即可求范围.【详解】(1)由题意,,令,则,当时,当时.所以.(5分)(2)由,所以,记,即恒成立,且,当时,当,令,则,所以在单调递增,且,,(令且,则,故在上递增,则,所以,以上成立),故存在唯一,使得,当时,递减,所以,此时,不合题意.当时,(ⅰ)若,由上知,则递增, (令且,则,故在上递增,则,所以,以上成立),所以恒成立,即成立,符合题意.(ⅱ),若,则单调递增,,,所以存在唯一使,当时,递减,当时,递增,又,,故存在唯一,使,故时,递增,时,递减,又,,所以时,则递增,故,即恒成立.综上,.(12分)【点睛】关键点点睛:第二问,注意构造中间函数研究单调性并确定零点,进而判断的符号求参数范围. 公众号:高中试卷

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服