六五文档>基础教育>试卷>高考数学专题一 三角形中基本量的计算问题(原卷版)
高考数学专题一 三角形中基本量的计算问题(原卷版)
格式:docx页数:11页大小:155.4 K上传日期:2023-11-18 09:38浏览次数:424 侵权/举报

专题一 三角形中基本量的计算问题1.正、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容eq\f(a,sinA)=eq\f(b,sinB)=eq\f(c,sinC)=2Ra2=b2+c2-2bccosA;b2=c2+a2-2cacosB;c2=a2+b2-2abcosC.变形(1)a=eq\f(bsinA,sinB),b=eq\f(asinB,sinA),c=eq\f(asinC,sinA);(2)sinA=eq\f(asinB,b),sinB=eq\f(bsinA,a),sinC=eq\f(csinA,a);(3)a=2RsinA,b=2RsinB,c=2RsinC;(4)sinA=eq\f(a,2R),sinB=eq\f(b,2R),sinC=eq\f(c,2R);(5)a∶b∶c=sinA∶sinB∶sinC;(6)eq\f(a+b+c,sinA+sinB+sinC)=2R.cosA=eq\f(b2+c2-a2,2bc);cosB=eq\f(c2+a2-b2,2ac);cosC=eq\f(a2+b2-c2,2ab).2.三角形面积公式S△ABC=eq\f(1,2)absinC=eq\f(1,2)bcsinA=eq\f(1,2)acsinB=eq\f(abc,4R)=eq\f(1,2)(a+b+c)·r(r,R为别是△ABC内切圆半径和外接圆半径),并可由此计算R、r.3.解三角形有关的二级结论(1)三角形内角和定理在△ABC中,A+B+C=π;变形:eq\f(A+B,2)=eq\f(π,2)-eq\f(C,2).(2)三角形中的三角函数关系①sin(A+B)=sinC;②cos(A+B)=-cosC;③tan(A+B)=-tanC(C≠eq\f(π,2));④sineq\f(A+B,2)=coseq\f(C,2);⑤coseq\f(A+B,2)=sineq\f(C,2).⑥在非Rt△ABC中,tanA+tanB+tanC=tanA·tanB·tanC(A,B,C≠eq\f(π,2)).(3)三角形中的不等关系①在三角形中大边对大角,大角对大边.②A>B⇔a>b⇔sinA>sinB⇔cosAeq\f(π,2),sinA>cosB,cosAc2.若△ABC为钝角三角形(假如C为钝角),则A+B<eq\f(π,2),sinAsinB.④c2=a2+b2⇔C为直角;c2>a2+b2⇔C为钝角;c2问题,要考虑结合余弦定理求解;⑤同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.考点一 计算三角形中的角或角的三角函数值【方法总结】计算三角形中的角或角的三角函数值的解题技巧此类问题主要考查正弦定理、余弦定理及三角形面积公式,最简单的问题是只用正弦定理或余弦定理即可解决.中等难度的问题要结合三角恒等变换再用正弦定理或余弦定理即可解决.难度较大的问题要结合三角恒等变换并同时用正弦定理、余弦定理和面积公式才能解决.【例题选讲】[例1](1)(2013·湖南)在锐角△ABC中,角A,B所对的边长分别为a,b,若2asinB=eq\r(3)b,则角A等于( )A.eq\f(π,12) B.eq\f(π,6) C.eq\f(π,4) D.eq\f(π,3)答案 D 解析 在△ABC中,利用正弦定理得,2sinAsinB=eq\r(3)sinB,∴sinA=eq\f(\r(3),2).又A为锐角,∴A=eq\f(π,3).(2)(2017·全国Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=eq\r(6),c=3,则A=________.答案 (1)75° 解析 由正弦定理,得sinB=eq\f(bsinC,c)=eq\f(\r(6)×\f(\r(3),2),3)=eq\f(\r(2),2),结合b

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服