六五文档>基础教育>知识点>24-平面解析几何(直线与圆锥曲线的位置关系)-五年(2018-2022)高考数学真题按知识点分类汇
24-平面解析几何(直线与圆锥曲线的位置关系)-五年(2018-2022)高考数学真题按知识点分类汇
格式:doc页数:120页大小:11.1 M上传日期:2023-11-22 15:03浏览次数:523 侵权/举报

五年2018-2022高考数学真题按知识点分类汇编24-平面解析几何(直线与圆锥曲线的位置关系)(含解析)一、单选题1.(2021·全国·统考高考真题)设B是椭圆的上顶点,点P在C上,则的最大值为(    )A. B. C. D.22.(2021·天津·统考高考真题)已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若.则双曲线的离心率为(    )A. B. C.2 D.33.(2020·全国·统考高考真题)设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为(    )A.4 B.8 C.16 D.324.(2020·全国·统考高考真题)设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为(    )A. B. C. D.5.(2020·全国·统考高考真题)设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=(    )A.1 B.2 C.4 D.86.(2020·全国·统考高考真题)设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为(    )A. B.3 C. D.27.(2018·全国·高考真题)已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B.3 C. D.48.(2018·全国·高考真题)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A.5 B.6 C.7 D.89.(2019·全国·高考真题)已知是双曲线的一个焦点,点在上,为坐标原点,若,则的面积为A. B. C. D.二、多选题10.(2022·全国·统考高考真题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则(    )A.C的准线为 B.直线AB与C相切C. D.11.(2022·全国·统考高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则(    )A.直线的斜率为 B.C. D.三、填空题12.(2022·全国·统考高考真题)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.13.(2021·全国·高考真题)已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.14.(2020·海南·高考真题)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.15.(2018·全国·高考真题)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.16.(2018·浙江·高考真题)已知点P(0,1),椭圆(m>1)上两点A,B满足,则当m=___________时,点B横坐标的绝对值最大.四、解答题17.(2022·全国·统考高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.(1)求E的方程;(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.18.(2022·全国·统考高考真题)设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.(1)求C的方程;(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.19.(2022·全国·统考高考真题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.(1)求l的斜率;(2)若,求的面积.20.(2022·全国·统考高考真题)已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.21.(2022·全国·统考高考真题)在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程为(s为参数).(1)写出的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标.22.(2022·浙江·统考高考真题)如图,已知椭圆.设A,B是椭圆上异于的两点,且点在线段上,直线分别交直线于C,D两点.(1)求点P到椭圆上点的距离的最大值;(2)求的最小值.23.(2022·北京·统考高考真题)已知椭圆:的一个顶点为,焦距为.(1)求椭圆E的方程;(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.24.(2021·全国·统考高考真题)在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.25.(2021·全国·统考高考真题)已知抛物线的焦点为,且与圆上点的距离的最小值为.(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值.26.(2021·全国·统考高考真题)已知抛物线的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.27.(2021·北京·统考高考真题)已知椭圆一个顶点,以椭圆的四个顶点为顶点的四边形面积为.(1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.28.(2021·全国·统考高考真题)已知椭圆C的方程为,右焦点为,且离心率为.(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.29.(2021·浙江·统考高考真题)如图,已知F是抛物线的焦点,M是抛物线的准线与x轴的交点,且,(1)求抛物线的方程;(2)设过点F的直线交抛物线与A、B两点,斜率为2的直线l与直线,x轴依次交于点P,Q,R,N,且,求直线l在x轴上截距的范围.30.(2021·天津·统考高考真题)已知椭圆的右焦点为,上顶点为,离心率为,且.(1)求椭圆的方程;(2)直线与椭圆有唯一的公共点,与轴的正半轴交于点,过与垂直的直线交轴于点.若,求直线的方程.31.(2020·全国·统考高考真题)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.32.(2020·全国·统考高考真题)已知椭圆的离心率为,,分别为的左、右顶点.(1)求的方程;(2)若点在上,点在直线上,且,,求的面积.33.(2020·山东·统考高考真题)已知椭圆C:的离心率为,且过点.(1)求的方程:(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.34.(2020·海南·高考真题)已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为,(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.35.(2020·北京·统考高考真题)已知椭圆过点,且.(Ⅰ)求椭圆C的方程:(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.36.(2020·天津·统考高考真题)已知椭圆的一个顶点为,右焦点为,且,其中为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.37.(2020·浙江·统考高考真题)如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于M(B,M不同于A).(Ⅰ)若,求抛物线的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.38.(2020·江苏·统考高考真题)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.39.(2020·山东·统考高考真题)已知抛物线的顶点在坐标原点,椭圆的顶点分别为,,,,其中点为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点的直线与抛物线交于,两点,且,求直线的方程.40.(2019·全国·统考高考真题)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.41.(2019·全国·高考真题)已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值.42.(2018·全国·高考真题)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.43.(2019·全国·高考真题)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若,求|AB|.44.(2018·全国·高考真题)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.45.(2019·全国·高考真题)已知点A,B关于坐标原点O对称,│AB│=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径.(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.46.(2018·全国·高考真题)已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.47.(2019·全国·高考真题)已知是椭圆的两个焦点,P为C上一点,O为坐标原点.(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.48.(2019·北京·高考真题)已知椭圆的右焦点为,且经过点.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.49.(2018·全国·高考真题)设抛物线,点,,过点的直线与交于,两点.(1)当与轴垂直时,求直线的方程;(2)证明:.50.(2019·天津·高考真题)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.51.(2018·北京·高考真题)已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.52.(2018·全国·高考真题)已知斜率为的直线与椭圆交于,两点.线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:.53.(2018·天津·高考真题)设椭圆的右顶点

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服