六五文档>基础教育>知识点>专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(
专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(
格式:docx页数:43页大小:4.2 M上传日期:2024-03-06 12:22浏览次数:446 侵权/举报

专题13统计易错点一:统计用表中概念不清、识图不准致误(频率分布直方图、总体取值规律)频率分布直方图作频率分布直方图的步骤①求极差:极差为一组数据中最大值与最小值的差.②决定组距与组数将数据分组时,一般取等长组距,并且组距应力求“取整”,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.③将数据分组④列频率分布表各小组的频率=eq\f(小组频数,样本容量).⑤画频率分布直方图纵轴表示eq\f(频率,组距),eq\f(频率,组距)实际上就是频率分布直方图中各小长方形的高度,小长方形的面积=组距×eq\f(频率,组距)=频率.频率分布直方图的性质①因为小矩形的面积=组距×eq\f(频率,组距)=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.②在频率分布直方图中,各小矩形的面积之和等于1.③eq\f(频数,相应的频率)=样本容量.④频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性.易错提醒:频率分布条形图和频率分布直方图是两个完全不同的概念,考生应注意两者之间的区别.虽然它们的横轴表示的内容是相同的,但是频率分布条形图的纵轴表示频率;频率分布直方图的纵轴表示频率与组距的比值,其各小组的频率等于该小组上的矩形的面积.例:如图所示是某公司(共有员工300人)2021年员工年薪情况的频率分布直方图,由此可知,员工中年薪在1.4万元~1.6万元之间的共有______人.易错分析:解本题容易出现的错误是审题不细,对所给图形观察不细心,认为员工中年薪在1.4万元~1.6万元之间的频率为,从而得到员工中年薪在1.4万元~1.6万元之间的共有(人)的错误结论.正解:由所给图形,可知员工中年薪在1.4万元~1.6万元之间的频率为,所以员工中年薪在1.4万元~1.6万元之间的共有(人).故72.易错警示:考生误认为频率分布直方图中纵轴表示的是频率,这是错误的,而是“频率/组距”,所以频率对应的是各矩形的面积.变式1:某大学有男生名.为了解该校男生的身体体重情况,随机抽查了该校名男生的体重,并将这名男生的体重(单位:)分成以下六组:、、、、、,绘制成如下的频率分布直方图:该校体重(单位:)在区间上的男生大约有人.变式2:现对某类文物进行某种物性指标检测,从件中随机抽取了件,测量物性指标值,得到如下频率分布直方图,据此估计这件文物中物性指标值不小于的件数为.变式3:如图是根据我国部分城市某年6月份的平均气温数据得到的样本频率分布直方图,其中平均气温的范围是[20,26],样本数据的分组为[20,21),[21,22),[22,23),[23,24),[24,25),[25,26].已知样本中平均气温低于22°C的城市个数为11,样本中平均气温不低于25°C的城市个数是.1.已知某班全体学生在某次数学考试中的成绩(单位:分)的频率分布直方图如图所示,则图中a所代表的数值是.2.某校共有400名学生参加了趣味知识竞赛(满分:150分),且每位学生的竞赛成绩均不低于90分.将这400名学生的竞赛成绩分组如下:,得到的频率分布直方图如图所示,则这400名学生中竞赛成绩不低于120分的人数为.3.从某小学所有学生中随机抽取100名学生,将他们的身高(单位:)数据绘制成频率分布直方图(如图),其中样本数据分组,则=.  4.某工厂抽取100件产品测其重量(单位:).其中每件产品的重量范围是.数据的分组依次为,据此绘制出如图所示的频率分布直方图,则重量在内的产品件数为.  5.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:  利用该指标制定一个检测标准,需要确定临界值,将该指标大于的人判定为阳性,小于或等于的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.设函数,则函数在区间取得最小值时.6.某大学有男生10000名.为了解该校男生的身体体重情况,随机抽查了该校100名男生的体重,并将这100名男生的体重(单位:kg)分成以下六组:、、、、、,绘制成如图所示的频率分布直方图,该校体重(单位:)在区间上的男生大约有人.  7.某中学为了解高三男生的体能情况,通过随机抽样,获得了200名男生的100米体能测试成绩(单位:秒),将数据按照,,…,分成9组,制成了如图所示的频率分布直方图.由直方图估计本校高三男生100米体能测试成绩大于13.25秒的频率是.  8.某工厂对一批产品的长度(单位:)进行检验,将抽查的产品所得数据分为五组,整理后得到的频率分布直方图如图所示,若长度在以下的产品有30个,则长度在区间内的产品个数为.  9.某中学为了解学生的数学学习情况,在全体学生中随机抽取200名,统计这200名学生某次数学考试的成绩,将所得的数据分为7组:,,…,,,并整理得到如下频率分布直方图,则在被抽取的学生中,该次数学考试成绩不低于80分的人数为.  10.某区为了解全区名高二学生的体能素质情况,在全区高二学生中随机抽取了名学生进行体能测试,并将这名的体能测试成绩整理成如下频率分布直方图.根据此频率分布直方图,这名学生平均成绩的估计值为.  11.将一个容量为100的样本数据,按照从小到大的顺序分为8个组,如下表:组号12345678频数10161815119若第6组的频率是第3组频率的2倍,则第6组的频率是.12.节约用水是中华民族的传统美德,某市政府希望在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费.为此希望已经学习过统计的小明,来给出建议.为了了解全市居民用水量的分布情况,小明通过随机走访,获得了100位居民某年的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.若该市政府希望使的居民每月的用水量不超过标准(吨),如果你是小明,你觉得的估计值为(精确到小数点后1位)易错点二:统计中的数字特征的实际意义理解不清楚致误(频率分布直方图特征数考查)众数、中位数、平均数①众数:一组数据中出现次数最多的数.②中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.③平均数:如果n个数x1,x2,…,xn,那么叫做这n个数的平均数.总体集中趋势的估计①平均数、中位数和众数等都是刻画“中心位置”的量,它们从不同角度刻画了一组数据的集中趋势.②一般地,对数值型数据(如用水量、身高、收入、产量等)集中趋势的描述,可以用平均数、中位数;而对分类型数据(如校服规格、性别、产品质量等级等)集中趋势的描述,可以用众数.频率分布直方图中平均数、中位数、众数的求法①样本平均数:可以用每个小矩形底边中点的横坐标与小矩形面积的乘积之和近似代替.②在频率分布直方图中,中位数左边和右边的直方图的面积应相等.③将最高小矩形所在的区间中点作为众数的估计值.易错提醒:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.例.某班名学生期中考试数学成绩的频率分布直方图如图所示.根据频率分布直方图,估计该班本次测试众数为.变式1:为响应自己城市倡导的低碳出行,小李上班可以选择自行车,他记录了次骑车所用时间(单位:分钟),得到频率分布直方图,则骑车时间的众数的估计值是分钟    变式2:数学兴趣小组的四名同学各自抛掷骰子5次,分别记录每次骰子出现的点数,四名同学的部分统计结果如下:甲同学:中位数为3,方差为2.8;        乙同学:平均数为3.4,方差为1.04;丙同学:中位数为3,众数为3;        丁同学:平均数为3,中位数为2.根据统计结果,数据中肯定没有出现点数6的是同学.变式3:以下5个命题中真命题的序号有.①样本数据的数字特征中,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息;②若数据,,,…,的标准差为S,则数据,,,…,的标准差为aS;③将二进制数转化成十进制数是200;④x是区间[0,5]内任意一个整数,则满足“”的概率是.1.2022年11月卡塔尔世界杯如期举行,这是世界足球的一场盛宴.为了了解全民对足球的热爱程度,组委会在某场比赛结束后,随机抽取了1000名观众进行对足球“喜爱度”的调查评分,将得到的分数分成6段:,,,,,,得到如图所示的频率分布直方图.图中部分数据丢失,若已知这1000名观众评分的中位数估计值为87.5,则m=.  2.为了普及环保知识,增强环保意识,某中学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均数为,则的大小关系是.3.《中国居民膳食指南()》数据显示,岁至岁儿童青少年超重肥胖率高达.为了解某地中学生的体重情况,某机构从该地中学生中随机抽取名学生,测量他们的体重(单位:千克),根据测量数据,按,,,,,分成六组,得到的频率分布直方图如图所示.根据调查的数据,估计该地中学生体重的中位数是.4.为了解某校高三学生的数学成绩,随机地抽查了该校100名高三学生的期中考试数学成绩,得到频率分布直方图如图所示.请根据以上信息,估计该校高三学生数学成绩的中位数为.(结果保留到小数点后两位)5.2021年某省高考体育百米测试中,成绩全部介于12秒与18秒之间,抽取其中100个样本,将测试结果按如下方式分成六组:第一组,第二组,…,第六组,得到如下频率分布直方图.则该100名考生的成绩的中位数(保留一位小数)是.6.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数、中位数的估计值分别为.  7.某快递驿站统计了近期每天代收快件的数量,并制成如下图所示的频率分布直方图.则该快递驿站每天代收包裹数量的中位数为.8.某质检部门对某新产品的质量指标随机抽取100件检测,由检测结果得到如图所示的频率分布直方图.由频率分布直方图可以认为,该产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.设表示从该种产品中随机抽取10件,其质量指标值位于的件数,则的数学期望=.(精确到)注:①同一组数据用该区间的中点值作代表,计算得样本标准差;②若,则,.9.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则.10.某大学天文台随机调查了该校100位天文爱好者的年龄,得到如下样本数据频率分布直方图,则估计该校100名天文爱好者的平均岁数为.  11.众数、平均数和中位数都描述了数据的集中趋势,它们的大小关系和数据分布的形态有关.在如图的分布形态中,分别表示众数、平均数、中位数,则中最小值为.  12.如图为某工厂工人生产能力频率分布直方图,则估计此工厂工人生产能力的平均值为.  易错点三:运用数字特征作评价时考虑不周(方差、标准差的求算)方差、标准差①假设一组数据为,则这组数据的平均数,方差为,标准差②若假设一组数据为,它的平均数为,方差为,则一组数据为,的平均数为,方差为。③标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.易错提醒:方差(标准差)越大,说明数据的离散性越大;方差(标准差)越小,说明数据的离散性越小,数据越集中、稳定.用样本的数字特征估计总体的

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服