解三角形与三角函数题型综合训练一、梳理必备知识1.正弦定理abc===2R.(其中R为ΔABC外接圆的半径)sinAsinBsinC⇔a=2RsinA,b=2RsinB,c=2RsinC;(边化角)abc⇔sinA=,sinB=,sinC=;(角化边)2R2R2R2.余弦定理:222cosA=b+c-a,2bca2=b2+c2-2bccosA,222a+c-b222cosB=2ac,⇒b=a+c-2accosB,222222a+b-cc=a+b-2abcosC.cosC=2ab.3.三角形面积公式:1111SΔABC=absinC=bcsinA=acsinB=a+b+crr为三角形ABC的内切圆半径22224.三角形内角和定理:CπA+B在△ABC中,有A+B+C=π⇔C=π-(A+B)⇔=-⇔2C=2π-2(A+B).2225.二倍角的正弦、余弦、正切公式①sin2α=2sinαcosα②cos2α=cos2α−sin2α=2cos2α−1=1−2sin2α1+cos2α=2cos2α升幂公式:1-cos2α=2sin2αcos2α=1(1+cos2α)降幂公式:221sinα=2(1-cos2α)2tanα③tan2α=.1−tan2α6.22basinx±bcosx=a+bsin(x±φ),(其中tanφ=);辅助角公式a求f(x)=Asin(ωx+φ)+B解析式A,B求法A+B=f(x)方法一:代数法max方法二:读图法B表示平衡位置;A表-A+B=f(x)min示振幅12πω求法方法一:图中读出周期T,利用T=求解;ω方法二:若无法读出周期,使用特殊点代入解析式但需注意根据具体题意取舍答案.φ求法方法一:将最高(低)点代入f(x)=Asin(ωx+φ)+B求解;方法二:若无最高(低)点,可使用其他特殊点代入f(x)=Asin(ωx+φ)+B求解;但需注意根据具体题意取舍答案.7.三角形中线问题如图在ΔABC中,D为CB的中点,2AD=AC+AB,然后再两边平方,转化成数量关系求解!(常用)8.角平分线如图,在ΔABC中,AD平分∠BAC,角A,B,C所对的边分别为a,b,c①等面积法11A1AS=S+S⇒AB×AC×sinA=AB×AD×sin+AC×AD×sin(常用)ΔABCΔABDΔADC22222②内角平分线定理:ABACABBD=或=BDDCACDCABS△ABD③边与面积的比值:=ACS△ADC9.基本不等式(最值问题优先用基本不等式)a+b①ab≤2②a2+b2≥2ab10.利用正弦定理化角(函数角度求值域问题)利用正弦定理a=2RsinA,b=2RsinB,代入面积公式,化角,再结合辅助角公式,根据角的取值范围,求面积或者周长的最值。【常用结论】①在ΔABC中,a>b⇔sinA>sinB⇔A>B;2π②sin2A=sin2B,则A=B或A+B=.2③在三角函数中,sinA>sinB⇔A>B不成立。但在三角形中,sinA>sinB⇔A>B成立二、三角函数与解三角形题型综合训练π1.(2023春·福建莆田·莆田一中校考阶段练习)已知函数fx=Asinωx+φA>0,ω>0,φ<的2部分图象如图所示:(1)求方程fx=2的解集;ππ(2)求函数gx=fx--fx+的单调递增区间.121232.(2023春·宁夏吴忠·青铜峡市高级中学校考阶段练习)函数fx=Asinωx+φ(A,ω,φ为常数,且πA>0,ω>0,ϕ<)的部分图象如图所示.2(1)求函数fx的解析式及图中b的值;ππ(2)将fx的图象向左平移个单位后得到函数y=gx的图象,求gx在0,上的单调减区间.623.(2023春·湖北十堰·校联考阶段练习)已知函数fx=sinx-3cosx.π22π(1)若x∈0,,且函数fx=,求cos+x的值;2331π(2)若将函数fx图像上的点的纵坐标不变,横坐标缩短为原来的,再将所得图像向左平移个单24π位长度,得到gx的图像,求函数gx在0,上的最小值.2424.(2023春·浙江宁波·余姚中学校考阶段练习)已知函数fx=sinxcosx-3cosx,将函数fx的图π象向左平移个单位长度,可得到函数gx的图象.4(1)求函数gx的表达式及单调递增区间;ππa2+13(2)当x∈,时,afx+gx≥-a+1恒成立,求正数a的取值范围.63225.(2023春·安徽滁州·安徽省滁州中学校考阶段练习)已知a,b,c为△ABC的内角A,B,C所对的边,且c2=a2+b2-ab(1)求角C(2)若sinB
解三角形与三角函数题型综合训练 学生版
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
相关推荐
-
解三角形与三角函数题型综合训练 解析版
2023-11-18 12:13
33页 -
解三角形中的结构不良问题 学生版
2023-11-18 12:17
11页 -
解三角形中的结构不良问题 解析版
2023-11-18 12:17
22页 -
借助导函数解决不等式中恒(能)成立问题(学生版)
2023-11-18 18:08
13页 -
借助导函数解决不等式中恒(能)成立问题(解析版)
2023-11-18 18:08
23页 -
经典(超越)不等式(解析版)
2023-11-18 18:10
7页 -
经典(超越)不等式(学生版)
2023-11-18 18:10
2页 -
均值不等式的“十一大方法与八大应用”(学生版)
2023-11-18 18:11
11页