六五文档>基础教育>试卷>文科数学02-2024届新高三开学摸底考试卷(全国通用)(参考答案)
文科数学02-2024届新高三开学摸底考试卷(全国通用)(参考答案)
格式:docx页数:6页大小:296 K上传日期:2023-11-23 23:05浏览次数:179 侵权/举报

2024届新高三开学摸底考试卷(全国卷)文科数学02·参考答案123456789101112DCDCBAADDAAB13.14.15.16.60°17.(1)证明见解析(2)【详解】(1)因为,,所以,,又由,得,,所以数列是首项为,公比为的等比数列,数列是首项为,公比为的等比数列.(2)由(1)得,,所以,,所以,所以.18.(1)证明见解析;(2)证明见解析.【详解】(1)证明:过点作的平行线,交于点,连接. 过点作的平行线交于点,连接.则四边形为平行四边形,有平行且等于.因为,所以.因为,所以,故,所以,又,所以四边形为平行四边形,有平行且等于,所以平行且等于,四边形为平行四边形,有.又平面,平面,所以平面.(2)证明:因为,,所以.因为平面与平面垂直,且交线为,又平面,所以平面,又平面,所以.又由(1)知,所以.19.(1)(2)(3)分布列见解析,40【详解】(1)将得分为50分记为事件A;得分为50分即在六个问题的结果中,有五个满意,一个不满意,可能的结果共有:(种)三名顾客产生的反馈结果总共有:(种) 则,∴购物中心得分为50分的概率为(2)将顾客丙投出一个不满意记为事件B,则,,(3)可能的取值为2、3、4、5、6,,23456∵,∴.20.(1);(2)证明见解析.【详解】(1)由题意知右焦点F(1,0),,又,则,,所以椭圆的标准方程为:;(2)设,,由可得,则,, 又,B(2,0),,法一:,由得,∴即λ为定值.法二:即λ为定值.21.(1)(2)【详解】(1)的定义域为,,则,,故切线方程为,即.(2)恒成立,其中,所以,记, 则,当时,;当时,,所以在单调递减,在单调递增,,则实数的取值范围为.22.(1);(2).【详解】(1)等价于①将代入①既得曲线C的直角坐标方程为,②(2)将代入②得,设这个方程的两个实根分别为则由参数t的几何意义既知,.23.(1)(2)m≤﹣或m≥1.【详解】(Ⅰ)不等式f(x)<8,即|2x+3|+|2x﹣1|<8,可化为①或②或③,…解①得﹣<x<﹣,解②得﹣≤x≤,解③得<x<,综合得原不等式的解集为{x|-}.(Ⅱ)因为∵f(x)=|2x+3|+|2x﹣1|≥|(2x+3)﹣(2x﹣1)|=4,当且仅当﹣≤x≤时,等号成立,即f(x)min=4,…又不等式f(x)≤|3m+1|有解,则|3m+1|≥4,解得:m≤﹣或m≥1. 公众号:高中试卷

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服