六五文档>基础教育>试卷>江苏省镇江市2024-2025学年高三上学期期初考试数学试卷
江苏省镇江市2024-2025学年高三上学期期初考试数学试卷
格式:docx页数:16页大小:1.1 M上传日期:2024-09-27 14:13浏览次数:168 侵权/举报

2024~2025学年度上学期高三期初试卷数学2024.9注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知一组数据:4,6,7,9,11,13,则这组数据的第50百分位数为()A.6 B.7 C.8 D.9【答案】C【解析】借助百分位数定义计算即可得.【详解】由,故这组数据的中位数为.故选:C.2.已知集合,,则()A. B. C. D.【答案】B【解析】由题意可得,,则.故选:B.3.已知,,,则的最小值为().A.4 B. C.6 D.【答案】B【解析】由于,,所以,当且仅当时取等号,故的最小值为.故选:B4.由数字2,3,4组成没有重复数字的三位数,则这个三位数是偶数的概率为()A. B. C. D.【答案】A【解析】将组成没有重复数字的三位数,共有种,而其中偶数有两种情况:①以为个位数的三位数,是,共有2种②以为个位数的三位数,是,共有2种所以,这个三位数是偶数的情况共有种,所以,这个三位数是偶数的概率为事件,则.故选:A.5.若正三棱锥的所有棱长均为3,则该正三棱锥的体积为()A.3 B. C. D.【答案】C【解析】如图,正三棱锥,,取中点,连接,取等边三角形的中心,连接,由正四面体的性质可知,顶点与底面中心连线垂直底面,∴平面即三棱锥的高为,∵,∴,∴,∴,∴.故选:C6.随机变量服从若则下列选项一定正确的是()A B.C. D.【答案】C【解析】因为由正态分布的对称性,可得,正态分布方差无法判断,,,所以ABD错误.故选::C7.已知正方体的棱长为,点为侧面四边形的中心,则四面体的外接球的体积为()A. B. C. D.【答案】D【解析】如图:取中点,连结,因为的棱长为的正方体,所以,且,所以四面体的外接球的球心为为,且外接球半径,所以四面体的外接球的体积.故选:D.8.已知定义域为R的函数,满足,且,则以下选项错误的是()A. B.图象关于对称C.图象关于对称 D.为偶函数【答案】B【解析】对于A,令,则,所以f1=0,故A正确;对于B,令,则,即,解得:或,因为,所以,令,,所以,所以图象不关于2,0对称,故B错误;对于C,令,则有即,故图象关于1,0对称,故C正确.对于D,令,则有即,即,即,因为函数的定义域为R,所以为偶函数,故D正确.故选:B.公众号:高中试卷君二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列求导运算正确的是()A. B.C. D.【答案】CD【解析】对于A选项,,A错误;对于B选项,,B错误;对于C选项,,C正确;对于D选项,,D正确.故选:CD.10.已知事件A与B发生的概率分别为,则下列说法正确的是()A. B.C. D.【答案】BD【解析】对于A,由于题目中没确定事件A与B是否相互独立,所以,不一定成立,故A错误;对于B,由于,则,则,故B正确;对于C,由于题目中没确定事件A与B是否相互独立,所以,也不一定成立,故C错误;对于D,,故,故D正确;故选:BD.11.函数y=fx的定义域为,区间,对于任意,,恒满足,则称函数在区间上为“凸函数”.下列函数在定义域上为凸函数的是()A. B.C D.【答案】AD【解析】对A:,,,由在0,+∞上单调递增,故其等价于,化简可得,故满足题意,故A正确;对B:,,,取,,可得,,又,故此时不满足题意,故B错误;对C:,,,化简得恒成立,不满足题意,故C错误;对D:,,,左右平方后化简可得,故满足题意,故D正确.故选:AD.三、填空题:本题共3小题,每小题5分,共15分.12.某人参加一次考试,共有4道试题,至少答对其中3道试题才能合格.若他答每道题的正确率均为0.5,并且答每道题之间相互独立,则他能合格的概率为______.【答案】【解析】解:某人参加考试,4道题目中,答对的题目数满足二项分布,所以故答案为:13.已知二次函数从1到的平均变化率为,请写出满足条件的一个二次函数的表达式_______.【答案】(答案不唯一)【解析】设fx=ax2+bx+c,则,由题意知,解之得,显然c的取值不改变结果,不妨取,则.故答案为:14.勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间像球一样来回自由滚动,并且始终保持与两平面都接触(如图).勒洛四面体是以一个正四面体的四个顶点分别为球心,以正四面体的棱长为半径的四个球的公共部分围成的几何体.若构成勒洛四面体ABCD的正四面体ABCD的棱长为2,在该“空心”勒洛四面体ABCD内放入一个球,则该球的球半径最大值是_______.【答案】【解析】勒洛四面体能够容纳的最大球与勒洛四面体的4个弧面都相切,即为勒洛四面体内切球,由对称性知,勒洛四面体内切球球心是正四面体的内切球、外接球球心,正外接圆半径,正四面体的高,设正四面体的外接球半径为,在中,,解得,因此,勒洛四面体内切球半径为.故答案为:.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某自助餐厅为了鼓励消费,设置了一个抽奖箱,箱中放有8折、8.5折、9折的奖券各2张,每张奖券的形状都相同,每位顾客可以从中任取2张奖券,最终餐厅将在结账时按照2张奖券中最优惠的折扣进行结算.(1)求一位顾客抽到的2张奖券的折扣均不相同的概率;(2)若自助餐的原价为100元/位,记一位顾客最终结算时的价格为X,求X的分布列及数学期望.【答案】(1)(2)答案见详解【解析】【小问1详解】从6张奖券中,任取2张奖券共有种选法,抽到的两张奖券相同的有3种选法,所以一位顾客抽到的2张奖券的折扣均不相同的概率为.【小问2详解】的所有可能取值为80,85,90,,,,的分布列为:808590.16.如图,在四棱锥中,,,,,平面,,E,F分别是棱,的中点.(1)证明:平面;(2)求二面角的正弦值.【答案】(1)证明见详解(2)【解析】【小问1详解】如图,连接,因为分别为的中点,所以,,又,,所以,,所以四边形是平行四边形,则,因为平面,平面,所以平面.【小问2详解】因为平面,平面,所以,,又,是平面内两条相交直线,平面,又平面,,所以两两互相垂直,以为坐标原点,,,的方向分别为,,轴的正方向,建立如图所示的空间直角坐标系.则A0,0,0,,,,,,,,,设平面的一个法向量为n1=x1,y1,z1,则,即,令,得,,,设平面的一个法向量为,则,即,令,得,,,设二面角的平面角为,,则.所以二面角的正弦值为.17.我们可以用“配方法”和“主元法”等方法证明“二元不等式”:,当且仅当时,等号成立.公众号:高中试卷君(1)证明“三元不等式”:.(2)已知函数.①解不等式;②对任意x∈0,+∞,恒成立,求实数的取值范围.【答案】(1)见解析(2)①;②.【解析】小问1详解】因为,则(当且仅当时取等),所以(当且仅当时取等),同理(当且仅当时取等),(当且仅当时取等),三式相加可得:,又因为,所以,所以(当且仅当时取等).【小问2详解】①由可得:,所以,即,即,则,所以,解得:②因为当x∈0,+∞时,,当且仅当,即时取等,所以当x∈0,+∞时,,对任意x∈0,+∞,恒成立,则,所以,解得:.所以实数的取值范围为:.18.在如图所示的平行六面体中,,.(1)求的长度;(2)求二面角的大小;(3)求平行六面体的体积.【答案】(1)(2)(3)【解析】【小问1详解】根据图形可知:,则;【小问2详解】公众号:高中试卷君作,则等于二面角的一个平面角,因为,,则,易知,所以,所以,即二面角的大小为;【小问3详解】由(2)知平面,而四边形的面积,则平行六面体的体积.19.已知函数.(1)函数是否具有奇偶性?为什么?(2)当时,求的单调区间;(3)若有两个不同极值点,,证明:.【答案】(1)函数不具有奇偶性(2)的单调递增区间为,单调递减区间为(3)证明见解析【解析】【小问1详解】,而,显然,且,所以既不是奇函数,也不是偶函数,故函数y=fx不具有奇偶性.【小问2详解】时,,,故当时,f′x>0,在上单调递增,当时,f′x<0,在0,+∞上单调递减,故的单调递增区间为,单调递减区间为0,+∞【小问3详解】,因为有两个不同极值点,,故即有两个不等的实根,令,所以有两个不等的正数根,所以,得,且,所以,设,,所以在上单调递增,所以,故.【点睛】关键点点睛:本题第三问关键是能根据题意转化为有两个不等的正数根,进而得,且,再得,利用单调性可证.

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服