第一节直线的方程知识框架知识点归纳1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x轴相交的直线,把x轴绕着交点按逆时针方向旋转到直线重合时,所转过的最小正角α也能刻画直线的倾斜程度,我们把这个角α称为这条直线的倾斜角.(2)范围:直线的倾斜角α的取值范围是{α|0≤α<π}.2.直线的斜率(1)我们把一条直线的倾斜角α的正切值叫作这条直线的斜率,斜率常用小写字母k表示,即k=tan__αeq\b\lc\(\rc\)(\a\vs4\al\co1(α≠\f(π,2))).(2)过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率k=eq\f(y2-y1,x2-x1).3.直线方程的五种形式名称几何条件方程适用条件斜截式纵截距、斜率y=kx+b与x轴不垂直的直线点斜式过一点、斜率y-y0=k(x-x0)两点式过两点eq\f(y-y1,y2-y1)=eq\f(x-x1,x2-x1)与两坐标轴均不垂直的直线截距式纵、横截距eq\f(x,a)+eq\f(y,b)=1不过原点且与两坐标轴均不垂直的直线一般式Ax+By+C=0(A2+B2≠0)所有直线[常用结论]1.直线的倾斜角α和斜率k之间的对应关系:α00<α<eq\f(π,2)eq\f(π,2)eq\f(π,2)<α<πk0k>0不存在k<02.截距和距离的不同之处“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可是零,而“距离”是一个非负数.3.直线的方向向量设A(x1,y1),B(x2,y2)(其中x1≠x2)是直线l上的两点,则向量eq\o(AB,\s\up6(→))=(x2-x1,y2-y1)以及与它平行的向量都是直线的方向向量.若直线l的斜率为k,它的一个方向向量的坐标为(x,y),则k=eq\f(y,x).4.直线Ax+By+C=0(A2+B2≠0)的一个法向量ν=(A,B),一个方向向量a=(-B,A).题型归类题型一直线的倾斜角与斜率例1直线l过点P(1,0),且与以A(2,1),B(0,eq\r(3))为端点的线段有公共点,则直线l斜率的取值范围为________________.答案 (-∞,-eq\r(3)]∪[1,+∞)解析 设PA与PB的倾斜角分别为α,β,直线PA的斜率是kAP=1,直线PB的斜率是kBP=-eq\r(3),当直线l由PA变化到与y轴平行的位置PC时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l由PC变化到PB的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-eq\r(3)].故斜率的取值范围是(-∞,-eq\r(3)]∪[1,+∞).感悟提升 (1)斜率的两种求法:定义法、斜率公式法.(2)倾斜角和斜率范围求法:①图形观察(数形结合);②充分利用函数k=tanα的单调性.题型二求直线的方程例2已知△ABC的三个顶点坐标为A(1,2),B(3,6),C(5,2),M为AB的中点,N为AC的中点,则中位线MN所在直线的方程为________.答案 2x+y-8=0解析 由题知M(2,4),N(3,2),故中位线MN所在直线的方程为eq\f(y-4,2-4)=eq\f(x-2,3-2),整理得2x+y-8=0.感悟提升 (1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程,要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).题型三直线方程的综合应用例3已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.(1)证明 直线l的方程可化为k(x+2)+(1-y)=0,令eq\b\lc\{(\a\vs4\al\co1(x+2=0,,1-y=0,))解得eq\b\lc\{(\a\vs4\al\co1(x=-2,,y=1.))∴无论k取何值,直线总经过定点(-2,1).(2)解 由方程知,当k≠0时,直线在x轴上的截距为-eq\f(1+2k,k),在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有eq\b\lc\{(\a\vs4\al\co1(-\f(1+2k,k)≤-2,,1+2k≥1,))解得k>0;当k=0时,直线为y=1,符合题意,故k的取值范围是[0,+∞).(3)解 由题意可知k≠0,再由l的方程,得Aeq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1+2k,k),0)),B(0,1+2k).依题意得eq\b\lc\{(\a\vs4\al\co1(-\f(1+2k,k)<0,,1+2k>0,))解得k>0.∵S=eq\f(1,2)·|OA|·|OB|=eq\f(1,2)·eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(1+2k,k)))·|1+2k|=eq\f(1,2)·eq\f((1+2k)2,k)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(4k+\f(1,k)+4))≥eq\f(1,2)×(2×2+4)=4,等号成立的条件是k>0,且4k=eq\f(1,k),即k=eq\f(1,2),∴Smin=4,此时直线l的方程为x-2y+4=0.感悟提升 (1)求解与直线方程有关的最值问题:先设出直线方程,建立目标函数,再利用基本不等式求解最值;(2)求直线方程:弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程;(3)求参数值或范围:注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.课后检测一、单选题1.经过两点的直线的倾斜角为( )A. B. C. D.【答案】A【分析】先根据两点的斜率公式求出斜率,结合斜率与倾斜角的关系可得倾斜角.【详解】因为,所以过两点的直线斜率为,所以倾斜角为.故选:A.2.直线l经过两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点,且与直线x+2y+1=0垂直,则l的方程是( )A.2x+y﹣7=0 B.2x﹣y﹣7=0C.2x+y+7=0 D.2x﹣y+7=0【答案】B【分析】联立方程可得l过的定点,由垂直可得直线的斜率,由点斜式可写直线的方程,化为一般式即可.【详解】联立方程,解得x=3,y=﹣1,故所求直线l过点(3,﹣1),由直线x+2y+1=0的斜率为,可知l的斜率为2,由点斜式方程可得:y+1=2(x﹣3),即2x﹣y﹣7=0,故选:B3.已知,则“直线与平行”是“”的( )条件A.充分不必要 B.必要不充分 C.充要 D.既不充分又不必要【答案】A【分析】根据直线的平行,斜率相等,截距不等即可解决.【详解】若直线与平行,则,即,当,时,两直线方程为,,此时两直线重合,故“直线与平行”是“”的充分不必要条件,故选:A.【点睛】本题考查充分必要条件,考查直线的位置关系,是基础题.4.已知直线与圆交于两点,是坐标原点,且,则实数的值为( )A. B.或 C.或 D.或【答案】C【分析】根据向量关系可得,由此可得圆心到直线距离为,建立方程求得结果.【详解】由可得:又为圆的圆心,则则到直线的距离为:即 本题正确选项:【点睛】本题考查直线与圆的相关问题,关键是能够利用向量的关系得到向量垂直的关系,从而能将问题转化为点到直线的距离问题.5.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线称之为三角形的欧拉线.已知的顶点,,若其欧拉线方程为,则顶点的坐标是( )A. B. C. D.【答案】A【分析】设的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得点的坐标.【详解】设,因为,,由重心坐标公式得重心为,代入欧拉线方程得:①的中点为,,所以的中垂线方程为, 联立,解得所以的外心为,则,化简得:②联立①②得:或,当时,、重合,舍去,所以顶点的坐标是故选:A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.6.已知圆,过的直线与圆交于两点,若,则直线的斜率为( )A. B. C.或 D.或【答案】C【解析】根据得圆心到直线的距离,再根据点到直线距离公式求直线的斜率.【详解】因为,所以圆心到直线的距离为,因为圆心到距离等于,所以直线的斜率必存在,设为,则直线,因此或故选:C【点睛】本题考查直线与圆位置关系,考查基本分析求解能力,属基础题.二、多选题7.已知直线,,当满足一定的条件时,它们的图形可以是( )A. B.C. D.【答案】AC【解析】首先将直线的一般式方程化为斜截式,根据斜率和截距之间的关系即可判断.【详解】解:直线可化为的斜率为,在轴上的截距为.直线可化为,斜率为,在轴上的截距为.当时,直线与平行,故正确.选项中,由直线在轴上的截距可得,.而由直线的斜率为,可得,故不正确.在选项中,由直线的斜率为,而直线在轴上的截距.直线在轴上的截距为,直线的斜率为,故正确.选项中,两直线斜率,.再由直线在轴上的截距,故不正确.故选:.8.已知直线:,动直线:,则下列结论正确的是( )A.存在,使得的倾斜角为 B.对任意的,与都有公共点C.对任意的,与都不重合 D.对任意的,与都不垂直【答案】ABD【分析】当时可判断A;直线与均过点可判断B;当时可判断C,由两直线垂直斜率乘积等于可判断D,进而可得正确选项.【详解】对于A:当时,直线:,此时直线的倾斜角为,故选项A正确;对于B,直线与均过点,所以对任意的,与都有公共点,故选项B正确;对于C,当时,直线为,即与重合,故选项C错误;对于D,直线的斜率为,若的斜率存在,则斜率为,所以与不可能垂直,所以对任意的,与都不垂直,故选项D不正确;故选:ABD.三、填空题9.经过点,且与直线平行的直线方程是__________.【答案】【解析】设直线方程为,代入求得,从而得到结果.【详解】设与直线平行的直线方程为,代入得: ,故答案为:.10.关于直线:,:,若,则__________.【答案】【分析】根据两直线垂直系数关系列式解决即可求解.【详解】若,则,解得.故答案为:.11.当m变化时,平行线和间的距离的最小值等于______.【答案】【分析】直接利用平行直线的距离公式得到答案.【详解】平行线和间的距离.当时有最小值故答案为【点睛】本题考查了平行直线间的距离,意在考查学生的计算能力.12.设,则过线段的中点,且与垂直的直线方程为__________.【答案】【分析】求出线段的中点坐标和斜率,利用点斜式写出直线方程.【详解】因为,所以线段的中点,且.所以与垂直的直线的斜率为,所以过线段的中点,与垂直的直线方程为,即.故答案为:四、解答题13.已知直线与垂直.(1)求;(2)求直线与直线之间的距离.【答案】(1)1或3(2)时,距离为;时,距离为.【分析】(1)若两直线垂直,则,代入即可求得;(2)根据(1)中结果,分或两种情况分别带入平行直线的距离公式求出即可.【详解】(1)解:由题知与垂直,故有,解得或;(2)由(1)知或,当时,,则两直线的距离为:,当时,,则两直线的距离为:,综上:时,距离为;时,距离为.14.已知集合,,若.求的值.【答案】或或.【分析】对集合分类讨论,当时显然成立,当时,根据集合表示直线上的点,利用直线的位置关系求解即可.【详解】当,即时,,显然
第一讲 直线的方程(教师版)
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
相关推荐
-
第九节 圆锥曲线中的定点问题(教师版)
2023-11-27 09:57
30页 -
第十节 圆锥曲线中的定值问题(教师版)
2023-11-27 09:57
35页 -
第十四讲 圆锥曲线在高考压轴题目中的考法探究(教师版)
2023-11-27 09:57
46页 -
第十一讲 圆锥曲线中的最值与范围问题(教师版)
2023-11-27 09:57
34页 -
第十三讲 圆锥曲线在高考小题中的考法探究(教师版)
2023-11-27 09:57
49页 -
专题01 子集、交集、并集、补集之间的关系式(解析版)
2023-11-27 23:00
11页 -
专题06 经典(超越)不等式(原卷版)
2023-11-27 23:00
3页 -
专题04 指数函数与对数函数互为反函数(原卷版)
2023-11-27 23:00
3页