为您找到与导数极值和最值讲课视频相关的共 116 个结果:
拉格朗日中值定理在导数中的应用(高阶拓展)命题规律及备考策略【命题规律】本节内容是新高考卷的载体内容,设题稳定,难度较大,分值为12分【备考策略】1能用导数解决
利用均值不等式求圆锥曲线中的最值一、考情分析与圆锥曲线有关的最值问题,在高考中常以解答题形式考查,且难度较大,它能综合应用函数、三角、不等式等有关知识,因而备受
专题54利用拆凑法求不等式的最值【方法点拨】已知的一边是二次齐次可分解,另一边是常数,可考虑换元法;例2、例3中使用了拆凑用以“凑形”,其目的在于一次使用基本不
专题04具有关于某点对称的函数的最值性质【方法点拨】1.若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0.2.关于某一点中心对称的函数在对称区
专题50圆锥曲线的最值【方法点拨】综合运用函数知识、向量、基本不等式等求解圆锥曲线中的最值问题.【典型题示例】例1已知,P为抛物线上任一点,则的最小值为.【答案
专题55一类貌似神离的不等式求最值【方法点拨】1.已知,求的最值型(其中、、、均为正数).此类问题应归结为“知和求和”型,解决的策略是利用常数代换,即将“1”将
专题34逆用导数的四则运算法则构造函数【方法点拨】1.已知中同时出现关于f(x)、f′(x)的不等关系,应考虑“逆用导数的四则运算法则”构造函数.2.常见的构造
专题49与圆锥曲线相关的线段和(差)的最值【方法点拨】动点P到两个定点A、B距离之和的最小值为|AB|,当且仅当P、A、B三点共线时成立,即|PA|+|PB|≥
专题41与过定点的直线相关的最值【方法点拨】选择直线方程的适当形式,若设为截距式,实质是引入了双元;若设为斜截式,则是引入了单元.无论那种形式,都有注意参数的范
抛物线必会十大基本题型讲与练04以抛物线为情景的最值与范围问题典例分析类型一、以抛物线为情景的点线最值问题1.抛物线上的一动点M到直线距离的最小值是(
微专题数列的性质、蛛网图、最值问题、恒成立问题、插项问题、公共项问题、规律问题、奇偶问题【秒杀总结】1.数列的周期性,此类问题的解法是由定义求出数列的前几项,然
双曲线必会十大基本题型讲与练04以双曲线为情境的最值或范围问题典例分析类型一:数形结合解决与双曲线交汇的最值问题1.已知双曲线C的一条渐近线为直线,C的右顶点坐
椭圆必会十大基本题型讲与练04以椭圆为情景的最值或范围问题典例分析类型一:利用函数思想求范围或最值1.如图,已知椭圆的左焦点为F,O为坐标原点,设过点F且不与坐
椭圆必会十大基本题型讲与练04以椭圆为情景的最值与范围问题典例分析类型一:利用函数思想求范围或最值1.如图,已知椭圆的左焦点为F,O为坐标原点,设过点F且不与坐
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级02023年3月广西高三模拟考试试题评讲韦君翰标准答案01听力理解02阅读理解03七选五
五年(2019-2023)年高考真题分项汇编专题03导数及其应用考点一导数的运算1.【多选】(2022•新高考Ⅰ)已知函数及其导函数的定义域均为,记.若,均为偶