为您找到与函数的极值怎么求例题相关的共 166 个结果:
专题04具有关于某点对称的函数的最值性质【方法点拨】1.若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0.2.关于某一点中心对称的函数在对称区
专题13一次绝对值函数【方法点拨】几个常见的含绝对值的一次函数的图象与性质:⑴的图象关于直线对称,且函数的最小值为;⑵的图象关于直线对称,且函数的最小值为;⑶的
专题07指数函数型函数的单调性、对称性【方法点拨】1.指数复合型函数的对称中心为.记忆方法:横下对,纵半分(即横坐标是使分母取对数的值,但真数为保证有意义,取的
专题10以分段函数为背景的解不等式【方法点拨】遇绝对值往往直接转化为分段函数解决.以分段函数为背景的解不等式,注意对分类后结果的处理,一般“类中取交、类后取并”
专题05与函数的对称性相关的零点问题【方法点拨】若单调奇函数f(x)满足f(a)+f(b)=0,则a+b=0.一般的,若单调函数f(x)关于点(m,n)对称,且
专题33与导数相关的极值、最值【方法点拨】1.极值问题转化为(二次)方程根的问题,为求某个表达式的范围,其难点在于消元、新元的范围.2.利用导数解决函数零点问题
专题34逆用导数的四则运算法则构造函数【方法点拨】1.已知中同时出现关于f(x)、f′(x)的不等关系,应考虑“逆用导数的四则运算法则”构造函数.2.常见的构造
专题02函数的奇偶性与单调性【方法点拨】1.若函数f(x)为偶函数,则f(x)=f(|x|),其作用是将“变量化正”,从而避免分类讨论.2.以具体的函数为依托,
专题03函数的奇偶性、对称性、周期性【方法点拨】1.常见的与周期函数有关的结论如下:(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的
专题09三次函数的对称性、穿根法作图象【方法点拨】对于三次函数f(x)=ax3+bx2+cx+d(其中a≠0),给出以下常用结论:(1)当a>0,b2-3ac>
专题08递推函数【方法点拨】类比于数列的递推关系,我们把具有f(x+1)=2f(x)等形式的函数称为递推函数.诸如函数f(x+1)=2f(x),意即变量的值增加
专题18几类函数的对称中心及应用【方法点拨】1.三次函数的对称中心为(,),其中,即,.记忆方法:类比于二次函数的对称轴方程,分母中.2.一次分式函数(或称双曲
专题15利用结构相同函数解题【方法点拨】1.一个方程中出现两个变量,适当变形后,使得两边结构相同;或不等式两边式子也可适当变形,使其两边结构相同,然后构造函数,
三角函数与解三角形大题归类目录重难点题型归纳
五年2018-2022高考数学真题按知识点分类汇编4-指数函数、对数函数、幂函数(含解析)一、单选题1.(2022·天津·统考高考真题)化简的值为(
五年2018-2022高考数学真题按知识点分类汇编31-不等式经典例题选讲(含解析)一、单选题1.(2022·全国·统考高考真题)已知集合,则( )A.
五年(2019-2023)年高考真题分项汇编专题06三角函数及解三角形考点一同角三角函数间的基本关系1.(2021•新高考Ⅰ)若tanθ=﹣2,则sinθ(1+
五年(2019-2023)年高考真题分项汇编专题02函数的基本概念与基本初等函数I考点一函数的值域1.(2019•上海)下列函数中,值域为,的是 A. B.