六五文档>基础教育>试卷>高考数学第2讲 几何特征(原卷版)
高考数学第2讲 几何特征(原卷版)
格式:docx页数:5页大小:727.2 K上传日期:2023-11-15 22:24浏览次数:132 侵权/举报

第2讲几何特征一.选择题(共20小题)1.(2017•青岛三模)已知点是双曲线左支上一点,、是双曲线的左、右两个焦点,且,与两条渐近线相交,两点(如图),点恰好平分线段,则双曲线的离心率是 A. B. C.2 D.2.(2021•沈阳二模二模)已知点、分别是双曲线的左,右焦点,为坐标原点,点在双曲线的右支上,且满足,,则双曲线的离心率的取值范围为 A., B., C., D.,3.(2017秋•顺庆区校级期中)已知双曲线的左右焦点分别为,,为双曲线上第二象限内一点,若直线恰为线段的垂直平分线,则双曲线的离心率为 A. B. C. D.4.(2020•河南模拟)已知双曲线的左右焦点分别为,,过点的直线与双曲线的左支相交于点,与双曲线的右支相交于点,为坐标原点.若,且,则双曲线的离心率为 A. B. C.2 D.5.(2020•淮北二模)已知双曲线的左右焦点分别为、,且抛物线的焦点与双曲线的右焦点重合,点为与的一个交点,且直线的倾斜角为,则双曲线的离心率为 A. B. C. D.6.(2017秋•孝感期末)已知双曲线的右顶点为,右焦点为,为双曲线在第二象限上的一点,关于坐标原点的对称点为,直线与直线的交点恰好为线段的中点,则双曲线的离心率为 A. B. C.2 D.37.(2021春•瑶海区月考)设双曲线的左、右焦点分别为,,过点的直线与的两支分别交于点,,若点满足,,则双曲线的渐近线方程为 A. B. C. D.8.(2020秋•德州期末)设双曲线的左焦点为,直线过点且与双曲线在第一象限的交点为,为坐标原点,,则双曲线的离心率为 A. B. C.2 D.9.(2017•尖山区校级四模)设双曲线的左右焦点分别为,,若在曲线的右支上存在点,使得△的内切圆半径为,圆心记为,又△的重心为,满足平行于轴,则双曲线的离心率为 A. B. C.2 D.10.(2017•成都模拟)设双曲线的左右顶点分别为,,左右焦点分别为,,以为直径的圆与双曲线左支的一个交点为,若以为直径的圆与相切,则双曲线的离心率为 A. B. C.2 D.11.(2019•朝阳四模)已知,为双曲线的左、右焦点,直线与双曲线的一个交点在以线段为直径的圆上,则双曲线的离心率为 A. B. C. D.12.(2017•四模拟)已知,是双曲线的左、右焦点,若直线与双曲线交于、两点,且四边形是矩形,则双曲线的离心率为 A. B. C. D.13.(2019秋•安徽期末)设是双曲线与圆在第一象限的交点,、分别是双曲线的左、右焦点,若,则双曲线的离心率为 A. B. C. D.14.(2020秋•池州期末)已知,分别是双曲线的左、右焦点,是上一点,且满足,则的离心率的取值范围是 A. B. C. D.15.(2020•广州一模)已知为坐标原点,设双曲线的左,右焦点分别为,,点是双曲线上位于第一象限内的点.过点作的平分线的垂线,垂足为,若,则双曲线的离心率为 A. B. C. D.216.(2020•江西模拟)已知直线与双曲线的一条渐近线交于点,双曲线的左,右焦点分别为,,且,则双曲线的渐近线方程为 A. B. C. D.或17.(2021•嘉兴二模)如图,已知双曲线的左、右焦点分别为,,以为直径的圆与双曲线的渐近线在第一象限的交点为,线段与另一条渐近线交于点,且的面积是面积的2倍,则该双曲线的离心率为 A. B. C. D.18.已知、分别为双曲线的左、右焦点,圆与该双曲线相交于点,若,则该双曲线的离心率为 A. B. C. D.19.(2010秋•宁波期末)已知、分别为双曲线的左、右焦点,点为双曲线上任意一点,过作的平分线的垂线,垂足为,则点的轨迹方程为 A. B. C. D.20.(2019•文登区三模)设,分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,,若,则双曲线渐近线的斜率为 A. B. C. D.二.填空题(共9小题)21.(2020•肇庆三模)已知点是双曲线左支上一点,是双曲线的右焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是 .22.(2020•天河区三模)已知点,分别是双曲线的左、右焦点,为坐标原点,点在双曲线的右支上,且满足,,则双曲线的离心率的取值范围为 .23.(2020春•安徽期末)已知双曲线的左、右焦点分别是,,直线过点,且与双曲线在第二象限交于点,若点在以为直径的圆上,则双曲线的离心率为 .24.(2020春•成都期末)已知双曲线的左右焦点分别为,,点在第一象限的双曲线上,且轴,△内一点满足,且点在直线上,则双曲线的离心率为 .25.(2020•济宁模拟)设双曲线的左、右焦点分别为,,,过作轴的垂线,与双曲线在第一象限的交点为,点坐标为且满足,若在双曲线的右支上存在点使得成立,则双曲线的离心率的取值范围是 .26.(2020•衡阳三模)已知,分别是双曲线的左、右焦点,过的直线与圆相切,且与双曲线的两渐近线分别交于点,,若,则该双曲线的离心率为 .27.(2021•4月份模拟)已知双曲线的左、右焦点分别为,,过作渐近线的垂线,垂足为,为坐标原点,且,则双曲线的离心率为 .28.(2021•榆林模拟)已知双曲线的左,右焦点分别为,,以为直径的圆与双曲线的一条渐近线交于点(异于坐标原点,若线段交双曲线于点,且,则该双曲线的离心率为 .29.(2020•深圳一模)已知点、分别为双曲线的左、右焦点,点,为的渐近线与圆的一个交点,为坐标原点,若直线与的右支交于点,且,则双曲线的离心率为 .

¥8/¥4VIP会员价

优惠:VIP会员免费下载,付费下载最高可省50%
注:已下载付费文档或VIP文档再次下载不会重复付费或扣除下载次数
购买VIP会员享超值特权
VIP专享免费下载,付费文档最高省50%
免费下载
付费折扣
身份标识
文档工具
限时7.4元/月购买VIP
全屏阅读
退出全屏
放大
缩小
扫码分享
扫一扫
手机阅读更方便
加入收藏
转PDF
付费下载 VIP免费下载

帮助
中心

联系
客服