为您找到与圆锥曲线中的设点与设线相关的共 121 个结果:
椭圆必会十大基本题型讲与练05椭圆中的中点弦问题典例分析1.过点M(-2,0)的直线m与椭圆+y2=1交于P1,P2两点,线段P1P2的中点为P,设直线m的斜率
椭圆必会十大基本题型讲与练06以椭圆为情景的定值问题典例分析1、已知椭圆经过点,离心率为,过原点作两条直线,直线交椭圆于,直线交椭圆于,且.(1)求椭圆的方程;
椭圆必会十大基本题型讲与练08以椭圆为情景的几何证明问题典例分析圆锥曲线中的证明问题是高考的热点内容之一,常见的有位置关系方面的,如证明相切、垂直、过定点等;数
椭圆必会十大基本题型讲与练09椭圆与平面向量的交汇问题典例分析角度一、以共线向量为条件情景命题1、设O为坐标原点,动点M在椭圆C:上,过M做x轴的垂线,垂足为,
椭圆必会十大基本题型讲与练02椭圆的焦点三角形典例分析一、焦点三角形的面积问题1.已知椭圆上一动点P到两个焦点F1,F2的距离之积为q,则q取最大值时,的面积为
椭圆必会十大基本题型讲与练03椭圆的离心率典例分析类型一、利用定义法求离心率1.直线经过椭圆的左焦点,交椭圆于、两点,交轴于点,若,则该椭圆的离心率是()A.
圆锥曲线中的“设而不求”一、考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算
圆锥曲线中的探索性问题与不良结构问题一、考情分析圆锥曲线中的探索性问题与不良结构问题是近年高考的热点,探索性问题通常为探索是否存在符合的点、直线或结果是否为定值
五年2018-2022高考数学真题按知识点分类汇编21-平面解析几何(圆锥曲线之椭圆)(含解析)一、单选题1.(2022·全国·统考高考真题)椭圆的左顶点为A,
五年2018-2022高考数学真题按知识点分类汇编24-平面解析几何(直线与圆锥曲线的位置关系)(含解析)一、单选题1.(2021·全国·统考高考真题)设B是椭
备战2024年高考阶段性检测名校重组卷(新高考)解析几何本试卷22小题,满分150分。考试用时120分钟一、单项选择题:本题共8小题,每小题5分,共40分。在每
第九节圆锥曲线中的定点问题题型一 直线过定点问题例1(2023·烟台一模改编)已知椭圆C:eq\f(x2,4)+y2=1,若A(-2,0),直线l:y=k
第十节圆锥曲线中的定值问题题型归类题型一 长度或距离为定值例1(2023·郑州模拟)已知点F(0,1),直线l:y=4,P为曲线C上的任意一点,且|PF|是P到
圆锥曲线在高考压轴题目中的考法探究题型分类类型1圆锥曲线中的轨迹方程问题在平面直角坐标系中,点分别在轴,轴上运动,且,动点满足.(1)求动点的轨迹的方程;(2)
第十一节圆锥曲线中的最值与范围问题题型归纳题型一 最值问题角度1 基本不等式法求最值例1(12分)(2023·青岛调研)已知椭圆Γ:eq\f(x2,a2)
圆锥曲线在高考小题中的考法探究题型归纳[题型一]曲线与轨迹已知双曲线:的左右焦点分别为,,过的直线与圆相切于点,且直线与双曲线的右支交于点,若,则双曲线的离心率