为您找到与直线与圆解题技巧相关的共 67 个结果:
专题01直线与椭圆的位置关系一、单选题1.已知曲线上任意一点满足,则曲线上到直线的距离最近的点的坐标是( )A. B. C. D.2.直线x-y+1=0被椭圆
专题06直线与双曲线的位置关系一、单选题1.直线与双曲线的交点情况是()A.恒有一个交点 B.存在m有两个交点C.至多有一个交点 D.存在m有三个交点2.若直线
专题04椭圆中的定点、定值、定直线问题一、单选题1.已知为椭圆的右焦点,点是直线上的动点,过点作椭圆的切线,,切点分别为,,则的值为()A.3 B.2 C.1
专题11直线与抛物线的位置关系一、单选题1.直线与抛物线有且只有一个公共点,则,满足的条件是()A. B.,C., D.或2.过点作直线,使它与抛物线仅有一个公
专题09双曲线中的定点、定值、定直线问题一、单选题1.已知为坐标原点,点在双曲线(为正常数)上,过点作双曲线的某一条渐近线的垂线,垂足为,则的值为()A. B.
专题01直线与椭圆的位置关系一、单选题1.已知曲线上任意一点满足,则曲线上到直线的距离最近的点的坐标是( )A. B. C. D.【解析】设,则,点的轨迹是以
专题06直线与双曲线的位置关系一、单选题1.直线与双曲线的交点情况是()A.恒有一个交点 B.存在m有两个交点C.至多有一个交点 D.存在m有三个交点【解析】将
专题11直线与抛物线的位置关系一、单选题1.直线与抛物线有且只有一个公共点,则,满足的条件是()A. B.,C., D.或【解析】当时,直线与抛物线有且只有一个
专题04点和圆、直线和圆的位置关系点与圆的位置关系1.(2022秋•滨湖区校级期中)已知⊙O的半径为5,OA=4,则点A在( )A.⊙O内 B.⊙O上 C.⊙
专题41与过定点的直线相关的最值【方法点拨】选择直线方程的适当形式,若设为截距式,实质是引入了双元;若设为斜截式,则是引入了单元.无论那种形式,都有注意参数的范
专题02匀变速直线运动的规律一、单选题1.(2023·山东)如图所示,电动公交车做匀减速直线运动进站,连续经过R、S、T三点,已知ST间的距离是RS的两倍,RS
专题03匀速直线运动的图像一、多选题1.(2023·湖北)时刻,质点P从原点由静止开始做直线运动,其加速度a随时间t按图示的正弦曲线变化,周期为。在时间内,下列
五年2018-2022高考数学真题按知识点分类汇编19-平面解析几何(直线与方程)(含解析)一、单选题1.(2022·全国·统考高考真题)椭圆的左顶点为A,点P
五年2018-2022高考数学真题按知识点分类汇编16-直线、平面平行的判断与性质(含解析)一、单选题1.(2021·浙江·统考高考真题)如图已知正方体,M,N
五年2018-2022高考数学真题按知识点分类汇编24-平面解析几何(直线与圆锥曲线的位置关系)(含解析)一、单选题1.(2021·全国·统考高考真题)设B是椭
五年2018-2022高考数学真题按知识点分类汇编17-直线、平面垂直的判断与性质(含解析)一、单选题1.(2022·全国·统考高考真题)在正方体中,E,F分别
备战2024年高考阶段性检测名校重组卷(新高考)解析几何本试卷22小题,满分150分。考试用时120分钟一、单项选择题:本题共8小题,每小题5分,共40分。在每